

CUSTOMER APPROVAL SHEET

Compa	any Name	НР
МС	DDEL	A080STN01.0
CUS	TOMER	Title:
APP	ROVED	Name :
☐ APPROVA	AL FOR SPECIFICAT	TIONS ONLY (Spec. Ver. <u>0.1</u>) TIONS AND ES SAMPLE (Spec. Ver. <u>0.1</u>) TIONS AND CS SAMPLE (Spec. Ver. <u>0.1</u>)

1 Li-Hsin Rd. 2. Science-Based Industrial Park Hsinchu 300, Taiwan, R.O.C. Tel: +886-3-500-8899 Fax: +886-3-577-2730

Doc. version :	0.1
Total pages :	33
Date :	2015/2/16

Product Specification

8" COLOR TFT-LCD MODULE

Model Name: A080STN01.0

Planned Lifetime: From 2015/Fab To 2016/Dec **Phase-out Control:** From 2016/July To 2016/Dec **EOL Schedule:** 2016/Dec

> >Preliminary Specification <->Final Specification

Note: The content of this specification is subject to change.

© 2015 AU Optronics All Rights Reserved, Do Not Copy.

1/33 Page:

Record of Revision

Version	Revise Date	Page	Content
0.0	2014/12/25	All	First Draft.
0.1	2015/02/16	Cover page	Doc version typo modification
		9,	
	VII.		
	9		
i .			

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

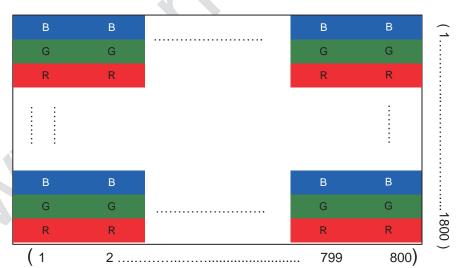
Page: 2/33

Contents

A.	General Information	3
В.	Outline Dimension	4
C.	Electrical Specifications	5
	1. TFT LCD Panel Pin Assignment	5
	2. Backlight Pin Assignment	7
	3. Absolute Maximum Ratings	
	4. Electrical DC Characteristics	9
	5. Electrical AC Characteristics	12
	6. Serial Interface Characteristics	14
	7. Power On/Off Characteristics	17
D.	Optical Specification	18
E.	Reliability Test Items	21
F.	Packing and Marking	24
	1. Packing Form	24
	2. Module/Panel Label Information	
	3. Carton Label Information	
G.	Application Note	
	1. Application Circuit	
	2. CABC Description	30

Version: 0.1

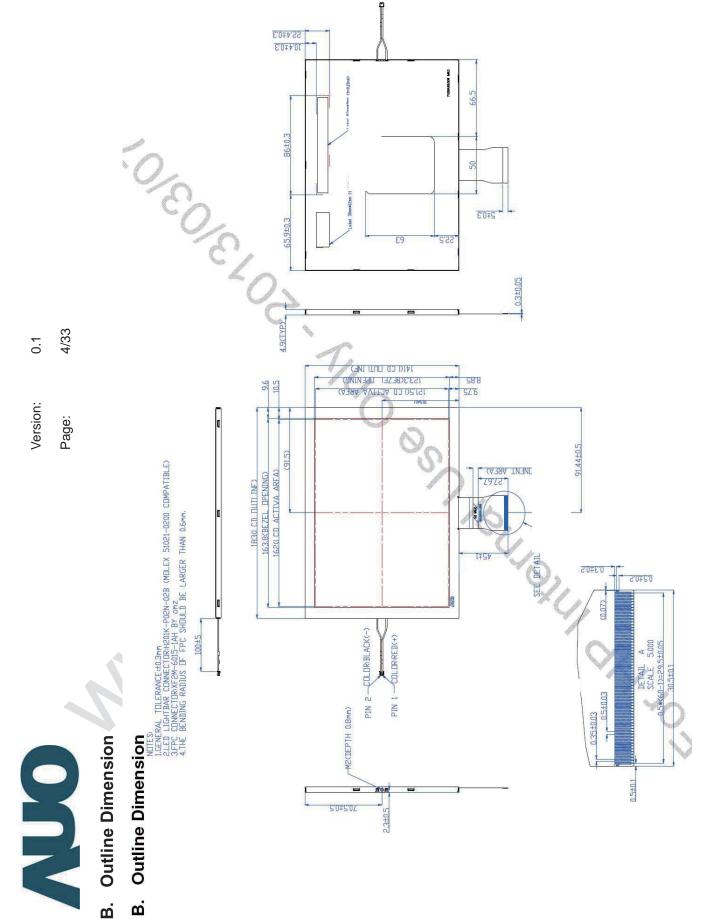
Page: 3/33


A. General Information

This product is for portable DVD and digital photo frame application.

NO.	Item	Item Unit Specification		Remark
1	Screen Size	inch	8(Diagonal)	
2	Display Resolution	dot	800(W)x600RGB(H)	
3	Overall Dimension	mm	183(W)x141(H)x4.9(D)	Note 1
4	Active Area	mm	162(W)x121.5(H)	
5	Pixel Pitch	mm	0.2025(W)x0.2025(H)	
6	Color Configuration		Tri-Gate	Note 2
7	Color Depth		16.2M Colors	Note 3
8	NTSC Ratio	%	50	
9	Display Mode		Normally White	
10	Panel surface Treatment		Anti-Glare, 3H	
11	Weight	g	225 ±10	
12	Panel Power Consumption	mW	189	Note 4
13	Backlight Power Consumption	W	1.58	
14	Viewing direction		6 o'clock (gray inversion)	

Note 1: Not include blacklight cable and FPC. Refer next page to get further information.


Note 2: Below figure shows dot stripe arrangement.

Note 3: The full color display depends on 24-bit data signal (pin 33~40, 42~49, 51~58).

Note 4: Please refer to Electrical Characteristics chapter.

②

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 5/33

C. Electrical Specifications

1. TFT LCD Panel Pin Assignment

		ctor :)	KF2M-6015-1AH	
NO.	Symbol	I/O	Description	Remark
1	VCOM	Ι	Common electrode driving voltage	
2	VGL	Р	Negative power supply voltage for Gate driver	
3	VGH	Р	Positive power supply voltage for Gate driver	
4	VGH	Р	Positive power supply voltage for Gate driver	
5	VDPA	Р	Positive power supply voltage for analog power	
6	VDNA	Р	Negative power supply voltage for analog power	
7	GND	Р	Ground	
8	DRV_BLU	0	CABC PWM_SIGNAL output via an output buffer	
9	CABC_EN	Ι	CABC function enable	
10	U/D	Ι	Up/Down selection.	Note2
11	R/L	Ι	Left/Right selection	Note2
12	GRB	Ι	H/W global reset	Note1
13	V10	-	Gamma correction voltage reference	
14	V9	I	Gamma correction voltage reference	
15	V8	Ι	Gamma correction voltage reference	
16	V7	Ι	Gamma correction voltage reference	
17	V6	I	Gamma correction voltage reference	
18	V5	_	Gamma correction voltage reference	
19	V4		Gamma correction voltage reference	
20	V3	Î	Gamma correction voltage reference	
21	V2	Ι	Gamma correction voltage reference	
22	V1	Ι	Gamma correction voltage reference	
23	VDDIO	Р	Digital interface supply voltage of digital	
24	VDDIO	Р	Digital interface supply voltage of digital	
25	CS	I	Chip select (Low active) of SPI	
26	SDA	I/O	Data input/output of SPI	
27	SCL	Ι	Clock input of SPI	
28	GND	Р	Ground	
29	DCLK	I	Data clock input	
30	GND	Р	Ground	
31	DE	I	Data enable Input (High active)	
32	GND	Р	Ground	
33	DB7	Ι	Blue data Input (MSB)	
34	DB6	-	Blue data Input	

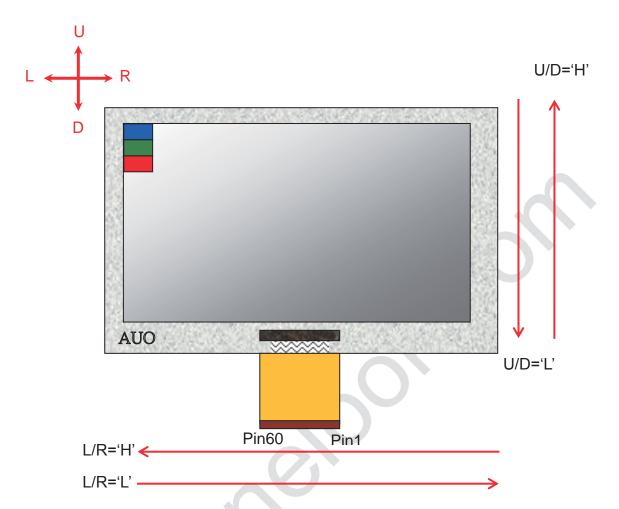
ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version: 0.1

Page: 6/33

35	DB5	I	Blue data Input
36	DB4	- 1	Blue data Input
37	DB3	I	Blue data Input
38	DB2	- 1	Blue data Input
39	DB1	- 1	Blue data Input
40	DB0	I	Blue data Input (LSB)
41	GND	Р	Ground
42	DG7	-	Green data Input (MSB)
43	DG6	I	Green data Input
44	DG5	Ι	Green data Input
45	DG4	I	Green data Input
46	DG3	-	Green data Input
47	DG2		Green data Input
48	DG1	I	Green data Input
49	DG0	I	Green data Input (LSB)
50	GND	Р	Ground
51	DR7	I	Red data Input (MSB)
52	DR6		Red data Input
53	DR5	I	Red data Input
54	DR4	I	Red data Input
55	DR3	I	Red data Input
56	DR2	ı	Red data Input
57	DR1	I	Red data Input
58	DR0	I.	Red data Input (LSB)
59	GND	Р	Ground
60	VCOM	Т	Common electrode driving voltage

I: Input; P: Power


Note1: Global reset, normally pulled high. Suggest to connecting with an RC (R=10K ohm, C=1uF)reset circuit for stability. Normally pull high.

Note2:

U/D	Direction	L/R	Direction
Н	$D \rightarrow U$	Н	$R \rightarrow L$
L	U→ D	L	$L \rightarrow R$

Version: 0.1 Page: 7/33

2. Backlight Pin Assignment

Recommended connector: H201K-P02N-02B (MOLEX 51021-0200 COMPATIBLE)

NO.	Symbol	I/O	Description	Remark
1	HI	♦I	Power supply for backlight unit (High voltage)	
2	GND	-	Ground for backlight unit	

3. Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
	VDDIO	GND=0	-0.5	5	V	
	VDPA	GND=0	-0.5	5.9	V	
Dawer Valtage	VDNA	GND=0	-5.9	0.5	V	
Power Voltage	VGH	GND=0	VDPA		V	
	VGL	GND=0		VDNA	V	
	VGH-VGL		-	32	V	

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 8/33

Input signal voltage		Vi	GND=0	-0.3	VDDIO+0.3	V	Note 1
V1~V5 GND=0 0 VDPA-0.2 V	Input signal voltage	VCOM	GND=0	-3.5	0	V	
V6~V10 GND=0 VDNA+0.2 0 V	iliput signai voltage	V1~V5	GND=0	0	VDPA-0.2	٧	
		V6~V10	GND=0	VDNA+0.2	0	V	

Note 1: DE, Digital Data.

Note 3: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 9/33

4. Electrical DC Characteristics

a. DC Charateristics

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
		VDDIO	3	3.3	3.6	V	
		VDPA	4.5	5	5.5	V	
Power su	apply	VDNA	-5.5	-5	-4.5	V	
		VGH	12.6	14	15.4	V	
		VGL	-15.4	-14	-12.6	V	
VCOM		Vcdc	-1.6	-1.9	-2.2	V	
Input signal H Level voltage L Level		Vih	0.7xVDDIO		VDDIO	V	Note 1
		Vil	0		0.3xVDDIO	V	Note 1
Pull-up/down impedance		Rin		800k			
Input level of V1~V5		Vx	GND		VDPA-0.2	V	Note 2
Input level of	V6~V10	Vx	VDNA+0.2		GND	V	Note 2

Note 1: DE, Digital Data

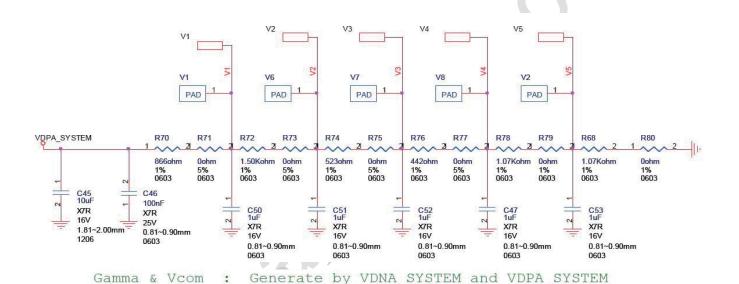
Note 2: VDPA > V1 > V2 > V3 > V4 > V5 > V6 > V7 > V8 > V9 > V10 > VDNA

b. Current Consumption (AGND=GND=0V)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Input current for VDDIO	IVDDIO	VDDIO=3.3V	-	6.45	7	mA	Note 1
Input current forVDPA	IVDPA	VDPA=5V	-	5.58	12.9	mA	Note 1
Input current for VDNA	IVDNA	VDNA=-5V	-	-5.68	-13.4	mA	Note 1
Input current for VGH	IVGH	VGH=14V	-	3.96	5	mA	Note 1
Inpur current for VGL	IVGL	VGL=-14V	-	-4.04	-5	mA	Note 1
Input Leakage Current	lin	Digital input pins	-	-	±1	uA	Note 2

Note 1: The test pattern use the following pattern.

Note 2: except for pull-up, pull-down pins.

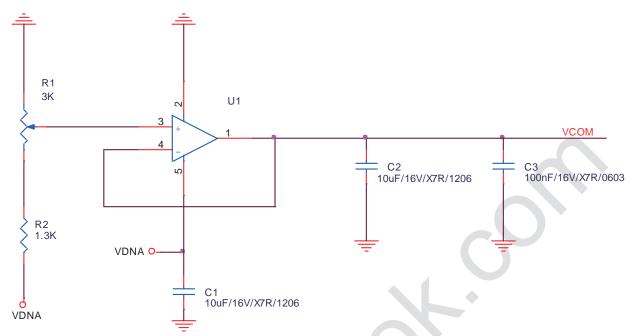


Page: 10/33

c. Gamma voltage suggested circuit is as follows

V1	4.277
V2	2.882
V3	2.396
V4	1.985
V5	0.994
V6	-0.998
V7	-1.995
V8	-2.409
V9	-2.908
V10	-4.305

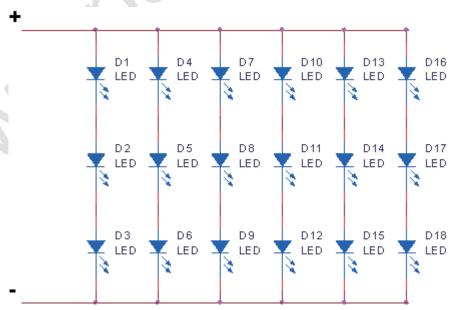
V3 V10 PAD 1 PAD 1 PAD 1 PAD PAD R81 R82 R83 R84 R69 R85 R86 R87 R88 R89 R90 R91 VDNA SYSTEM 0ohm 5% 0603 0ohm 5% 0603 0ohm 5% 0603 0ohm 5% 0603 1.1Kohm 1.1Kohm 453ohm 549ohm 1.54Kohm 732ohm 0ohm 1% 0603 1% 0603 1% 0603 1% 0603 5% 0603 1% 0603 1% 0603 C59 10uF X7R 16V C48 C54 1uF C55 1uF C56 1uF C57 1uF C58 1uF 100nF X7R X7R 16V X7R 16V X7R 16V X7R 16V X7R 16V 25V 1.81~2.00mm 0.81~0.90mm 0.81~0.90mm 0603 0.81~0.90mm 0603 0.81~0.90mm 0603 0.81~0.90mm 0603 0.81~0.90mm 0603 1206 0603


ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version: 0.1

Page: 11/33

d. Vcom buffer suggested circuit is as follows



e. Backlight Driving Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Lightbar current	Ι _L	-	150	-	mA	Note 1, 2
Power consumption	Р		1.58	1.68	W	
LED Lightbar life time		10,000	-	-	Hr	Note 1, 2, 3, 4

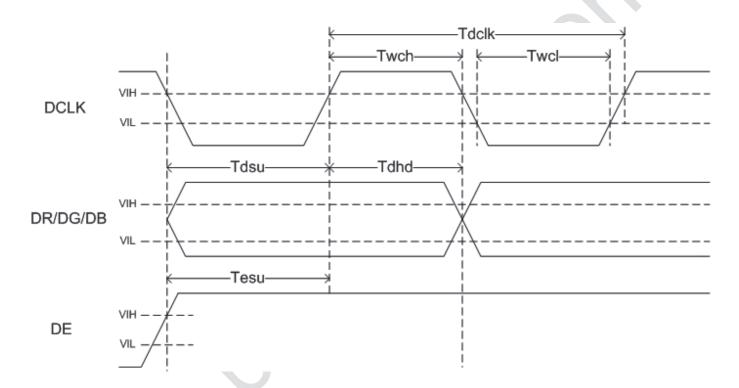
Note 1: LED backlight is LED lightbar type(18 pcs of LED).

Note 2: Definition of "LED Lifetime": brightness is decreased to 50% of the initial value. LED Lifetime is restricted under normal condition, ambient temperature = 25°C and LED lightbar current= 150mA

Note 3: The value is only for reference.

Note 4: If it operates with LED lightbar voltage more than 150mA, it maybe decreases LED lifetime.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

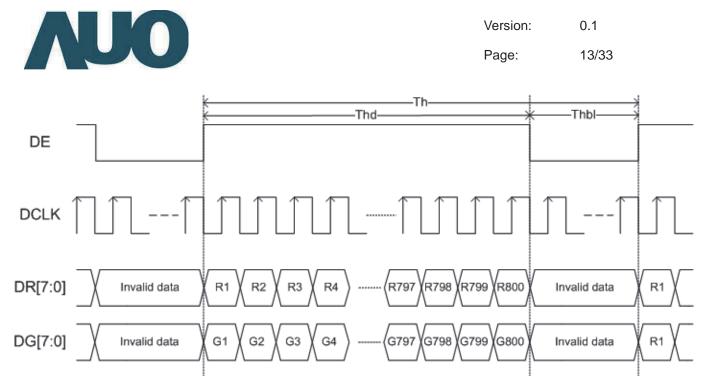

Version: 0.1

Page: 12/33

5. Electrical AC Characteristics

a. Signal AC Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Clock High time	Twcl	8			ns	
Clock Low time	Twch	8			ns	
Data setup time	Tdsu	5			ns	
Data hold time	Tdhd	10			ns	
Data enable set-up time	Tesu	4			ns	



b. Input Timing Setting

Horizontal timing:

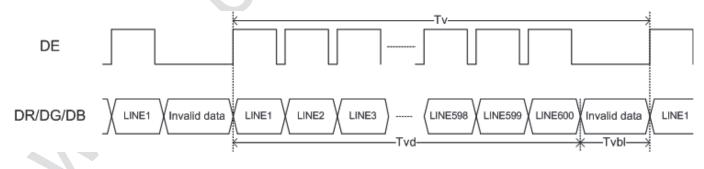
Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
DCLK frequency	Fdclk	36.7	40	45.1	MHz	
DCLK period	Tdclk	22	25	27	ns	
Hsync period (= Thd + Thbl)	Th	986	1056	1183	DCLK	Note 1,2
Active Area	Thd		800		DCLK	
Horizontal blanking	Thbl	186	256	383	DCLK	

Invalid data

Horizontal input timing

B797

YB798 YB799 YB800


Vertical timing:

DB[7:0]

Invalid data

В1

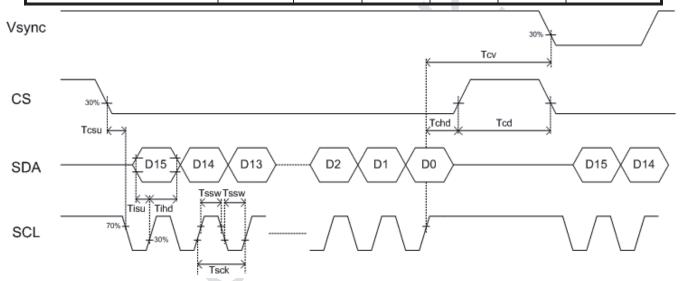
acar arring.						
Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Vsync period (= Tvd + Tvbl)	Tv	620	628	635	Th	
Active lines	Tvd		600		Th	
Vertical blanking	Tvbl	20	28	35	Th	

Vertical timing

Note 1: If input timing operates with Min. to Typ. setting, the PWCK value use default value 1973 (Register R39=0000_0111, Register R40=1011_0101), and no need to change SPI register.

Note 2: If input timing operates with Typ. to Max. setting, the PWCK value must be set to 2025(Register R39=0000_0111, Register R40=1110_1001). Please reference the Serial interface setting table in Page.16 to set SPI Register R39 and R40 value.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.



Page: 14/33

6. Serial Interface Characteristics

a. Serial Control Interface AC Characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
Serial clock	Tsck	320			ns	
SCL pulse duty	Tscw	40%	50%	60%	Tsck	
Serial data setup time	Tisu	120			ns	
Serial data hold time	Tihd	120			ns	
Serial clock high/low	Tssw	120			ns	
CS setup time	Tcsu	120			ns	
CS hold time	Tchd	120			ns	
Delay from CS to VSYNC	Tcv	1			us	
Chip select distinguish	Tcd	1			us	

AC serial interface write mode timings

b. Register Bank

A totally 16-bit register includeing 7-bit address D[15:9], 1-bit Read bit D[8], and 8-bit data D[7:0] can be set via 3-wire serial peripheral interface. Beflow figure is for a detail description of the parameters.

Figure. Serial interface read sequence

- (1) Each serial command consists of 16bits of data which is loaded one bit a time at the rising edge of serial slock SCL.
- (2) Command loading operation starts from the falling edge of CS and is completed at the next rising edge of CS.
- (3) The serial control block is operational after power on reset, but commands are established by the following rising edge of End Frame. If command is transferred multiple times for the same resgister, the last command before the following rising edge of the End Frame is valid, except for some special registers (ex. GRB, etc.).
- (3) If less the 16 bits of SCL are input while CS is low, the transferred data is ignored. The read operation interrupt.
- (4) If 16 bits or more of SCL are input while CS is low, the first 16 bits of transferred data in the duration of CS="L" are valid data.
- (5) Serial block operates with the SCL clock
- (6) Serial data can be accepted in the standy(power save) mode.
- (7) It is suggested that DE, DCLK always exists in the same time.
- (8) When GRB is activated through the serial interface, all register are cleared, except the GRB value.
- (9) The register setting values are rewritten by the influence of static electricity, a noise, etc. to unsuitable value, incorrect operating may occur. It is suggested that the SPI interface will setup as frequently as possible.

c. Serial Interface Setting Table.

Don	ADDRESS							R				DA	ГА			
Reg	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R0	0	0	0	0	0	0	0	0				1 note 1	1 note 1	1 note 1	0	1
R1	0	0	0	0	0	0	1	0	O _{note 1}	0 note 1			0	0	0	0
R39	0	1	0	0	1	1	1	0					PW_CK			
R40	0	1	0	1	0	0	0	0	PW_CK							

Note 1: The value of this bit could not be change. Otherwise the Panel will display abnormal.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 16/33

d. Register Description

R0 setting

Address	Bit		Discription			
	7 - 2		AUO internal use	000111		
0000000	1	STB	Standby mode setting	0		
	0	GRB	S/W global reset	1		

Bit 1	STB	
0	Nomal operation (default)	
1	Standby mode. Register data are kept.	

Bit 0	GRB
0	S/W global reset. Reset all register to default value. H/W GRB has higher priority.
1	Normal operation. (default)

R1 Settings

Address	Bit		Discription	Default
	7 - 4		AUO internal use	0000
0000001	3 - 2	CHUD	Vertical scan direction setting	00
	1 - 0	CHLR	Horizontal scan direction setting	00

Bit 3 - 2	CHUD						
0x	Accoring to H/W pin U/D setting. (default)						
10	/ertical scan direction is from up to down.						
11	Vertical scan direction is from down to up.						

Bit 1 - 0	CHLR
0x	Accoring to H/W pin L/R setting. (default)
10	Horizontal scan direction is from left to right.
11	Horizontal scan direction is from right to left.

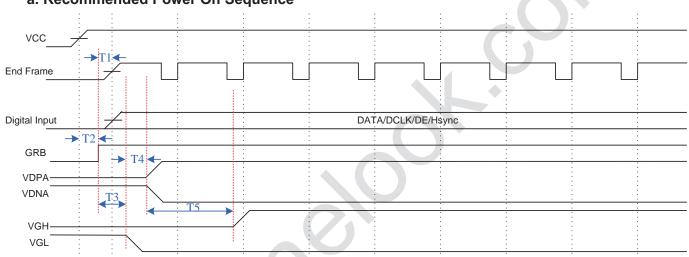
R39 setting

Address	Bit		Default	
	3 - 0		AUO PW_CK default value	0111
100111	3 - 0	-	AUO PW_CK Max value	0111

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR

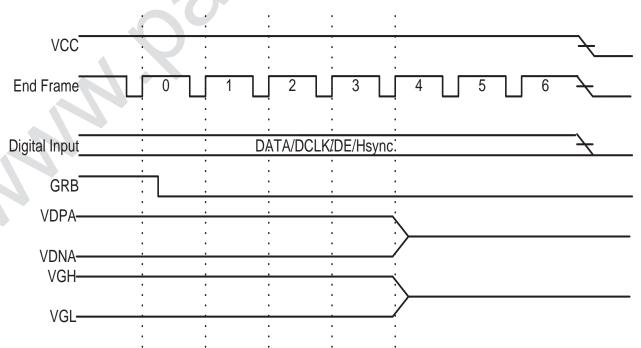
TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version: 0.1


Page: 17/33

R40 setting

Address	Bit	Discription					
	7 - 0		AUO PW_CK default value	1011_0101			
101000	7 - 0	-	AUO PW_CK Max value	1110_1001			


7. Power On/Off Characteristics

a. Recommended Power On Sequence

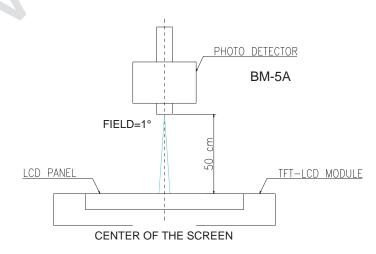
T1 > 0us; $T2 \ge 10us$; $T3 \ge 0us$; T4 > 0us; T5 > 0us

b. Power Off Sequence

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Version: 0.1

Page: 18/33


D. Optical Specification

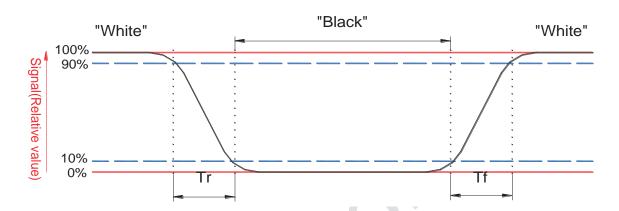
All optical specification is measured under typical condition (Note 1, 2)

ltem		Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Response Time Rise Fall		Tr θ=0°			12 18	24 36	ms ms	Note 3
Contrast ra	atio	CR	At optimized viewing angle	400	500			Note 4
Top Bottom Viewing Angle Left Right			CR≧10		60 65 70 70	C	deg.	Note 5
Brightness		Y _L	V _L = 12V	200	250		cd/m ²	Note 6
	White	X Y	θ=0°	0.26 0.28	0.31	0.36		
Red		X	θ=0° θ=0°	0.56	0.61	0.66		
Chromaticity	Green	X	θ=0°	0.30	0.35 0.32	0.40		
		Y X	θ=0° θ=0°	0.51 0.10	0.56 0.15	0.61		
	Blue	Y	θ=0°	0.07	0.12	0.17		
Uniformi	ty	ΔY_L	%	70	75		%	Note 7

Note 1 : To be measured in the dark room. Ambient temperature =25 $^{\circ}$ C, and LED lightbar current I_L =

Note 2: To be measured on the center area of panel with a viewing cone of 1°by Topcon luminance meter BM-5A, after 15 minutes operation.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

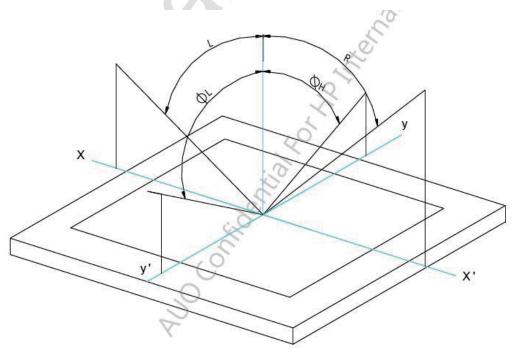

Version: 0.1

Page: 19/33

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black" (rising time), respectively.

The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.



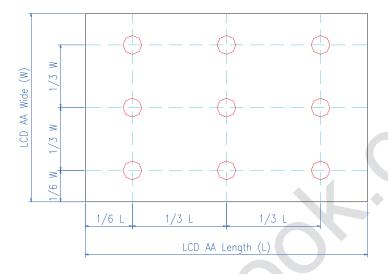
Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Photo detector output when LCD is at "White" status Contrast ratio (CR) = Photo detector output when LCD is at "Black" status

Note 5. Definition of viewing angle, θ , Refer to figure as below.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.



Page: 20/33

Note 6. Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Note 7: Luminance Uniformity of these 9 points is defined as below:

minimum luminance in 9 points (1-9) Uniformity = maximum luminance in 9 points (1-9)

Page: 21/33

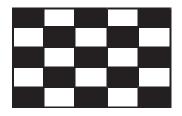
E. Reliability Test Items

No.	Test items	Conditions		Remark
1	High Temperature Storage	Ta= 70°C	240Hrs	
2	Low Temperature Storage	Ta= -30°C	240Hrs	
3	High Ttemperature Operation	Tp= 60°C	240Hrs	
4	Low Temperature Operation	Ta= -10°C	240Hrs	
5	High Temperature & High Humidity	Tp= 50°C . 80% RH	240Hrs	Operation
6	Heat Shock	-10°C~60°C, 100 cycle,	1Hrs/cycle	Non-operation
7	Electrostatic Discharge	Contact = ± 4 kV, d Air = ± 8 kV, cla	Note 4	
8	Image Sticking	25℃, 4hrs		Note 5
9	Vibration	Frequency range : 10~8 Stoke : 1.5n Sweep : 10 ~ 2 hours for each directi (6 hours for total)	nm 55 ~ 10Hz	Non-operation JIS C7021, A-10 condition A : 15 minutes
10	Mechanical Shock	100G . 6ms, ±X,±3 times for each di		Non-operation JIS C7021, A-7 condition C
11	Vibration (With Carton)	Random vibrati 0.015G ² /Hz from 5- –6dB/Octave from 20	~200Hz	IEC 68-34
12	Drop (With Carton)	Height: 60cn 1 corner, 3 edges, 6		
13	Pressure	5kg, 5sec		Note 6

Note 1: Ta: Ambient Temperature. Tp: Panel Surface Temperature

Note 2: In the standard conditions, there is not display function NG issue occurred. All the cosmetic specification is judged before the reliability stress.

Note 3: All the cosmetic specification is judged before the reliability stress.

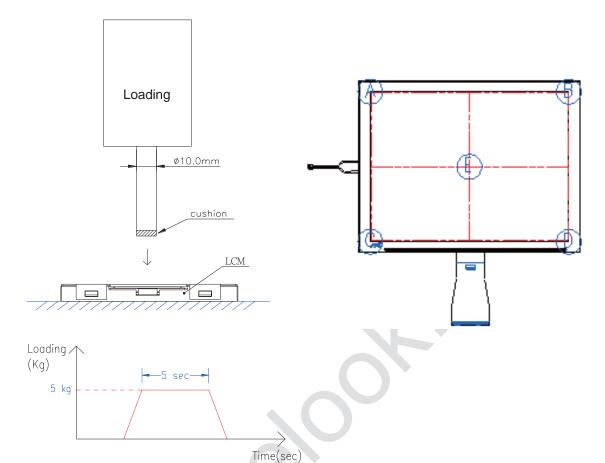

Version: 0.1

Page: 22/33

Note4: All test techniques follow IEC6100-4-2 standard.

Test Condition		Note
Pattern		
Procedure And Set-up	Contact Discharge : 330Ω, 150pF, 1sec, 8 point, 25times/point Air Discharge : 330Ω, 150pF, 1sec, 8 point, 25times/point	
Criteria	B – Some performance degradation allowed. No data lost. Self-recoverable hardware failure.	
Others	Gun to Panel Distance No SPI command, keep default register settings.	

Note 5: Operate with 5x5 chess board pattern as figure and lasting time and temperature as the conditions. Then judge with 50% gray level after waiting 20 min, the mura is less than JND 2.5.



Note 6: The panel is tested as figure. The jig is \$\psi\$ 10 mm made by Cu with rubber and the loading speed is 3mm/min on position A~E. After the condition, no glass crack will be found and panel function check is OK.(no guarantee LC mura . LC bubble)

Note 7. In Reliability test, performance is confirmed after leave in room temperature

Page: 23/33

Page: 24/33

F. Packing and Marking

1. Packing Form

Part No.	79.08A02.001	84.01A04.001	80.07001.004	83.08A07.001	81.01A09.003	82.17B02.001	
No. Part Name	1 A/S BAG A080FW01	2 S291 TAPE	3 TAPE CREPED TAPE	4 CUSHION PACKAGING	5 CARTON AB ORG 520*340*250	6 CARTON BLANK LABEL	
			2				x 250 mm
	7						Max. capacity: 30 modules Max. Weight: 7kg Carton outline: 520 x 340 x 250 mm

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

Page: 25/33

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number and printed with code 39/128 with the following definition:

<u>ABÇDEFGHIJKLMNOPQRSTUV</u>

For internal system usage and production serial numbers.

AUO Module or Panel factory code, represents the final production factory to complete the Product

Product version code, ranging from 0~9 or A~Z (for Version after 9)

Week Code, the production week when the product is finished at its production process

3. Carton Label Information

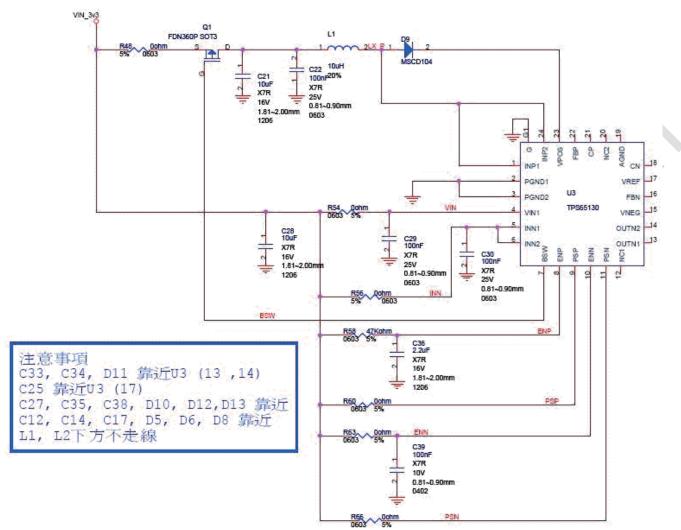
The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is apparing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton
Date from 01 to 31
Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.
A.D. year, ranging from 1~9 and 0. The single digit code reprents the last number of the year

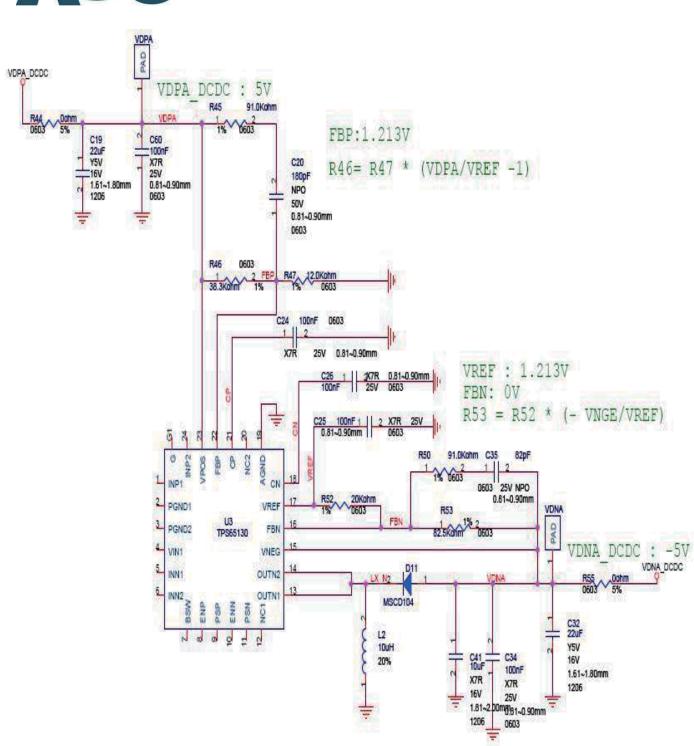
Refer to the drawing of packing format for the location and size of the carton label.

26/33



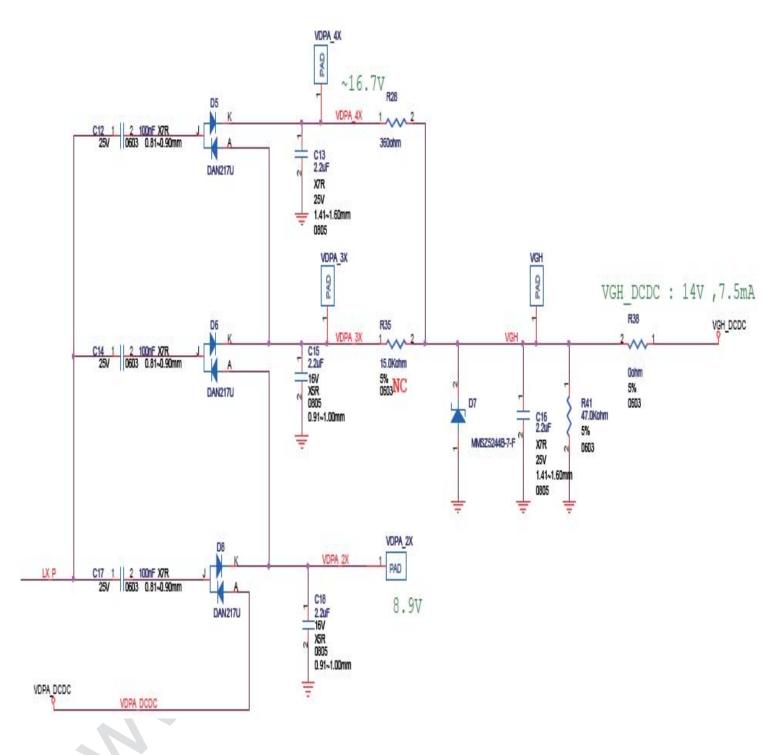
Version: 0.1

Page:


G. Application Note

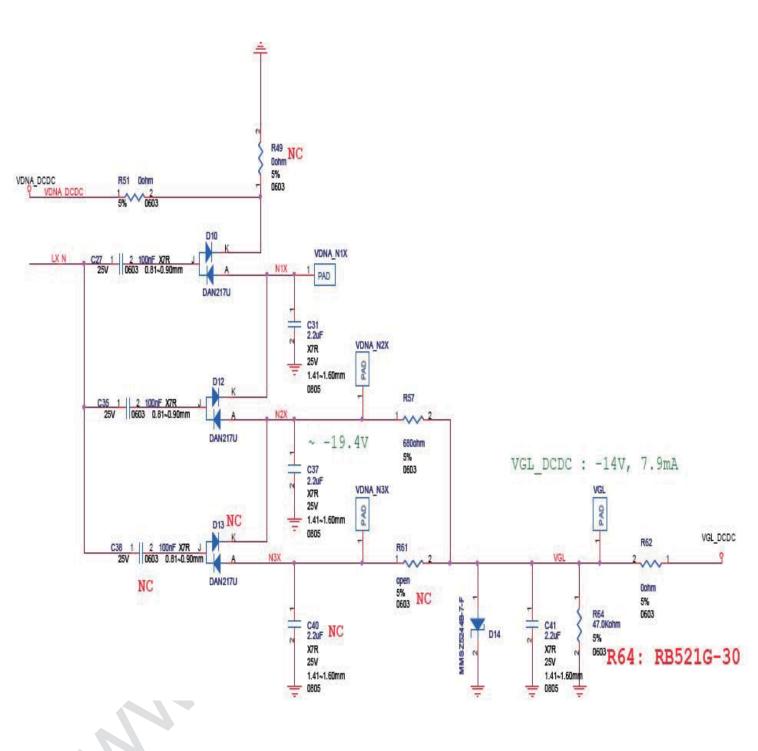
1. Application Circuit

Page: 27/33



Version: 0.1

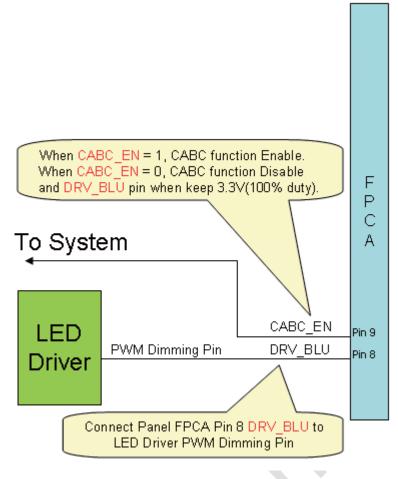
28/33 Page:


29/33

②

Version: 0.1

Page:



2. CABC Description

Version: 0.1

30/33 Page:

Page: 31/33

H. Precautions

- 1. Do not twist or bend the module and prevent the unsuitable external force for display module during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module.
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Be sure to turn off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dewdrop may lead to destruction. Please wipe off any moisture before using module.
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with TFT display module.
- 15. Static electricity will damage the module, please do not touch the module without any grounded device.
- 16. Do not disassemble and reassemble the module by self.
- 17. Be careful do not touch the rear side directly.
- 18. No strong vibration or shock. It will cause module broken.
- 19. Storage the modules in suitable environment with regular packing.
- 20. Be careful of injury from a broken display module.
- 21. Please avoid the pressure adding to the surface (front or rear side) of modules, because it will cause the display non-uniformity or other function issue.