

INNOLUX DISPLAY CORPORATION LCD MODULE SPECIFICATION

Customer:		
Model Name:	AT080TN64	
Date:	2023/12/04	
Version:	V1.0	
□Preliminary :	Specification	

For Customer's Acceptance

Final Specification

Comment

Approved by	Reviewed by	Prepared by
Joko.Wang	Menghsuan.Lu	KC.Chang
2023/12/04	2023/12/04	2023/12/04

INNOLUX

Record of Revision

Version	Revise Date	Page	Content
V1.0	2023/12/04		GZ0800NA0035S Final SPEC initial version V1.0

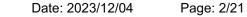
Purnose

Contents

•	1 41 2000	••••••
	1.1 General Specifications	1
2	Pin Assignment	2
	2.1 TFT LCD Panel Driving Section	2
3	Operation Specifications	5
	3.1 Absolute Maximum Rating	
	3.1.1 Typical Operation Conditions	
	3.1.2 Current Consumption	
	3.1.3 Backlight Driving Conditions	
	3.3 Timing Characteristics	
4	Optical Specifications	
5	Reliability Test Items	17
6	General Precautions	19
	6.1 Safety	19
	6.2 Handling	
	6.3 Static Electricity	
	6.4 Storage	
	6.5 Cleaning	
7	Mechanical Drawing	20
8	Package Drawing	21
	8.1 Packaging Drawing	21

Date: 2023/12/04 Page: 1/21

The specification AT080TN64 is a 8 "(800x480) TFT Liquid Crystal Display module with LED Backlight unit, 50 pin TTL interface, normally white trans-missive display mode. This module will be applied to Consumer Electronics.


1.1 General Specifications

No.	Item	Specification	Remark
1	LCD size	8.0 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800 X 3(RGB) X 480	
4	Display mode	Normally White, Transmissive	
5	Dot pitch	0.0736(W) X 0.2070(H) mm	
6	Active area	176.64(W) X 99.36(H) mm	
7	Module size	192.8(W) X 116.9(H) X 6.4(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	Digital	
11	Backlight Power consumption	2.232 W (Typ)	
12	Panel Power consumption	0.226 W (Typ)	
13	Weight	245g(Typ.)	
14	Source-IC Gate-IC	EK79713 EK73202	
15	Driving methods	1+2 dot	

Note 1: Refer to Mechanical Drawing.

2 Pin Assignment

2.1 TFT LCD Panel Driving Section

FPC Connector is used for the module electronics interface. The recommended model is FH12A-50S-0.5SH manufactured by Hirose.

Pin No.	Symbol	I/O	Function	Remark
1	V _{LED+}	P	Power for LED backlight (Anode)	Ttoman
2	VLED+	P	Power for LED backlight (Anode)	
3	VLED-	P	Power for LED backlight (Cathode)	
4		P		
	VLED-		Power for LED backlight (Cathode)	
5	GND	P .	Power ground	
6	Vсом	I	Common voltage	
7	DV _{DD}	Р	Power for Digital Circuit	
8	MODE	I	DE/SYNC mode select	Note 1
9	DE	I	Data Input Enable	
10	VS	I	Vertical Sync Input	
11	HS	I	Horizontal Sync Input	
12	В7	I	Blue data(MSB)	
13	В6	Ł	Blue data	
14	B5	I	Blue data	
15	B4	NI I	Blue data	
16	В3	I	Blue data	
17	B2	I	Blue data	
18	B1	I	Blue data	Note 2
19	В0	I	Blue data(LSB)	Note 2
20	G7	I	Green data(MSB)	
21	G6	I	Green data	
22	G5	I	Green data	
23	G4	I	Green data	
24	G3	I	Green data	

INNOLUX Date: 2023/12/04 Page: 3/21

			Date. 2023/	12/04 Fage. 3/21
25	G2	I	Green data	
26	G1	I	Green data	Note 2
27	G0	I	Green data(LSB)	Note 2
28	R7	I	Red data(MSB)	
29	R6	I	Red data	
30	R5	I	Red data	
31	R4	I	Red data	
32	R3	I	Red data	
33	R2	I	Red data	
34	R1	I	Red data	Note 2
35	R0	I	Red data(LSB)	Note 2
36	GND	Р	Power Ground	
37	DCLK	I	Sample clock	Note 3
38	GND	Р	Power Ground	
39	L/R	I	Left / right selection	Note 4,5
40	U/D	I	Up/down selection	Note 4,5
41	V _G H	Р	Gate ON Voltage	
42	V_{GL}	Р	Gate OFF Voltage	
43	AV _{DD}	Р	Power for Analog Circuit	
44	RESET	Î	Global reset pin.	Note 6
45	NC		No connection	
46	Vсом	N _I	Common Voltage	
47	DITHB	I	Dithering function	Note 7
48	GND	Р	Power Ground	
49	NC	-	No connection	
50	NC	-	No connection	

I: input, O: output, P: Power

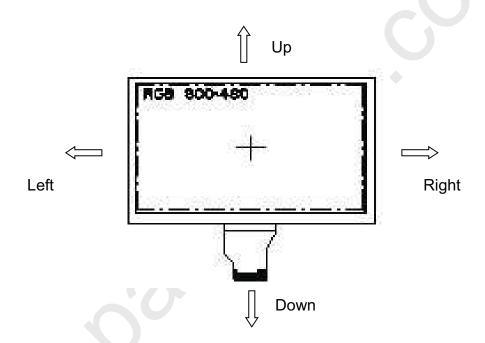
Note 1: DE/SYNC mode select. Normally pull high.

When select DE mode, MODE="1", VS and HS must pull high.

When select SYNC mode, MODE= "0", DE must be grounded.

Note 2: When input 18 bits RGB data, the two low bits of R,G and B data must be grounded.

Note 3: Data shall be latched at the falling edge of DCLK.



Date: 2023/12/04 Page: 4/21

Note 4: Selection of scanning mode

Setting of scan control input		Scanning direction		
U/D	L/R	Scarning direction		
GND	DV _{DD}	Up to down, left to right		
DV _{DD}	GND	Down to up, right to left		
GND	GND	Up to down, right to left		
DV _{DD}	DV _{DD}	Down to up, left to right		

Note 5: Definition of scanning direction. Refer to the figure as below:

Note 6: Global reset pin. Active low to enter reset state. Suggest to connect with an RC reset circuit for stability. Normally pull high.

Note 7: Dithering function enable control, normally pull high. When DITHB="1", Disable internal dithering function, When DITHB="0", Enable internal dithering function,

Date: 2023/12/04 Page: 5/21

3 Operation Specifications

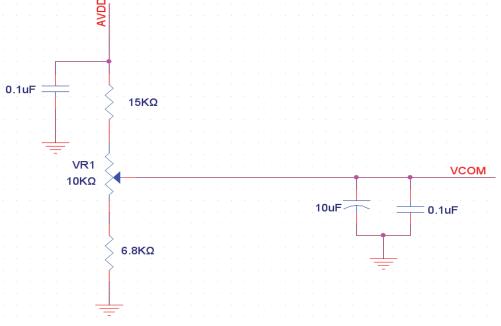
3.1 Absolute Maximum Rating

(GND=AV_{SS}=0V, Note 1)

(GND-AVSS-0V, Note 1)						
Item	Symbol	Val	ues	Unit	Domonis	
item	Symbol	Min.	Max.	Unit	Remark	
	Vcc	-0.3	5.0	V		
	AV _{DD}	6.5	13.5	V		
Power voltage	VgH	-0.3	40.0	V		
	V _{GL}	-20.0	0.3	V		
	V _{GH} -V _{GL}	20	40.0	V		
Operation Temperature	Тор	-30	85	$^{\circ}\!\mathbb{C}$		
Storage Temperature	T _{ST}	-30	85	$^{\circ}\!\mathbb{C}$		
LED Reverse Voltage	Vr	-	1.2	V	Each LED Note 2	
LED Forward Current	If	-	25	mA	Each LED	

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 2: VR Conditions: Zener Diode 20mA


Date: 2023/12/04 Page: 6/21

3.1.1 Typical Operation Conditions

(Note 1)

lko	Company of		Values			Damarik
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
	DV _{DD}	3.0	3.3	3.6	V	Note 2
Power voltage	AV _{DD}	10.2	10.4	10.6	V	
	V _{GH}	15.3	16.0	16.7	V	
	V _{GL}	-7.7	-7.0	-6.3	V	
Input signal voltage	V _{COM}	3.4	4.4	5.4	V	Note 4
Input logic high voltage	ViH	0.7 DV _{DD}	0.9 DV _{DD}	DV_DD	V	Note 2
Input logic low voltage	VIL	0	0.1 DV _{DD}	0.3 DV _{DD}	V	Note 3

- Note 1: Be sure to apply DV_{DD} and V_{GL} to the LCD first, and then apply V_{GH}.
- Note 2: DV_{DD} setting should match the signals output voltage (refer to Note 3) of customer's system board.
- Note 3: DCLK, HS, VS, RESET, U/D, L/R, DE, R0~R7, G0~G7, B0~B7, MODE, DITHB.
- Note 4: Typ. Vcom is only a reference value, it must be optimized according to each LCM. Be sure to use VR;

3.1.2 Current Consumption

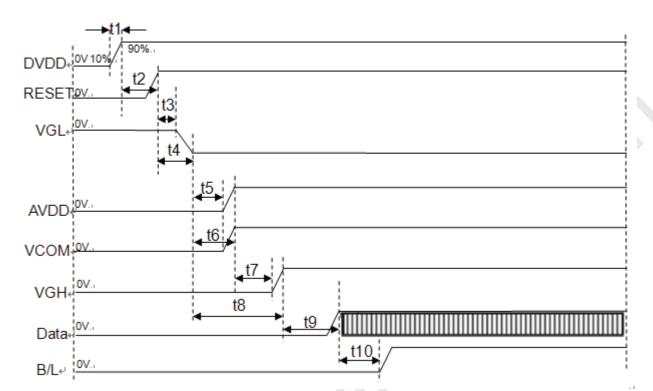
	Symbol	Values			Uni	Remark
Item	Symbol	Min.	Тур.	Max.	t	Remark
Current for Driver	l _{GH}	0.05	0.2	1	mA	
	I_{GL}	0.05	0.2	1	mA	
	IDV _{DD}	1	4	10	mA	
	IAV _{DD}	5	20	50	mA	

3.1.3 Backlight Driving Conditions

lkom	Current al		Values	l lmi4	Damank		
Item	Symbol	Min.	Тур.	Max.	Unit	Remark	
Voltage for LED backlight	VL	8.4	9.3	10.2	V	Note 1	
Current for LED backlight	IL	216	240	264	mA		
LED life time	0-	20,000	-	-	Hr	Note 2	

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25 $^{\circ}$ C and I_L =240mA.

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and I_L =240mA. The LED lifetime could be decreased if operating I_L is lager than 240 mA.



Global LCD Panel Exchange Center

Date: 2023/12/04 Page: 8/21

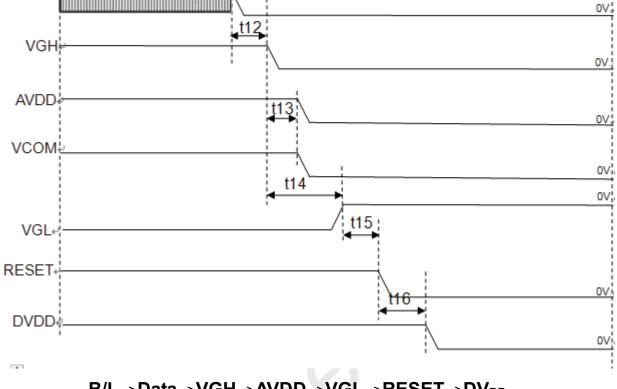
3.2 Power Sequence

3.2.1 Power on:

 $DV_{DD} \rightarrow RESET \rightarrow VGL \rightarrow AVDD \rightarrow VGH \rightarrow Data \rightarrow B/L$

Symbol	SPEC					
	Min.	Тур.	Max.	Unit		
t1	0.5	5	20	ms		
t2	1	1	1.5	ms		
t3	10	15	20	ms		
t4	20	22	24	ms		
t5	1	2	3	ms		
t6	5	6	7	ms		
t7	1.5	2	4	ms		
t8	10	12	15	ms		
t9	150	-	500	ms		
t10	180	190	200	ms		

Note: Data include R0~R7, B0~B7, GO~G7, U/D, L/R, DCLK, HS, VS, DE. Note: Be sure to apply DV_{DD} and V_{GL} to the LCD first, and then apply V_{GH} .


Page: 9/21

Date: 2023/12/04

3.2.2 Power off: B/L. t11, 0V. Data₽ 0V. t12

 $B/L \rightarrow Data \rightarrow VGH \rightarrow AVDD \rightarrow VGL \rightarrow RESET \rightarrow DV_{DD}$

Symbol				
	Min.	Тур.	Max.	Unit
t11	180	190	200	ms
t12	10	15	20	ms
t13	5	6	7	ms
t14	10	12	15	ms
t15	20	22	24	ms
t16	1	1.5	3	ms

Note: Data include R0~R7, B0~B7, GO~G7, U/D, L/R, DCLK, HS, VS, DE.

Date: 2023/12/04 Page: 10/21

3.3 Timing Characteristics

3.3.1 AC Electrical Characteristics

ltem	Symbol	Values			Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Onit	Remark	
HS setup time	Thst	8	10	12	ns		
HS hold time	Thhd	8	10	12	ns	Associated with Hsync width, refer to Hsync width=1 clk	
VS setup time	T _{vst}	8	10	12	ns		
VS hold time	Tvhd	8	10	12	ns	Associated with Vsync width, refer to Vsync width=1 clk	
Data setup time	Tdsu	8	10	12	ns		
Data hold time	Tdhd	8	10	12	ns		
DE setup time	Tesu	8	10	12	ns		
DE hold time	Tehd	8	10	12	ns	Associated with DE width, refer to DE width=1 clk	
DV _{DD} Power On Slew rate	Tpor	0.5	5	20	ms	From 0 to 90% DV _{DD}	
RESET pulse width	T _{Rst}	1	2	5	ms		
DCLK cycle time	Tcoh	20	30	33	ns		
DCLK pulse duty	Tcwh	40	50	60	%		

Date: 2023/12/04 Page: 11/21

3.3.2 Data Input Format

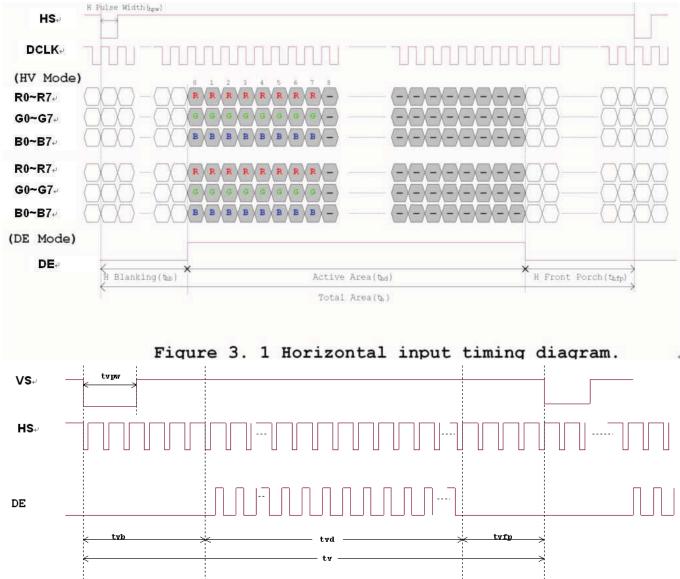


Figure 3. 2 Vertical input timing diagram.

Date: 2023/12/04 Page: 12/21

3.3.3 Timing

Item	Symbol		Values	Unit	Remark	
item		Min.	Тур.	Max.	Unit	Remark
Horizontal Display Area	thd		800		DCLK	
DCLK Frequency	fclk	26.4	33.3	46.8	MHz	
One Horizontal Line	th	862	1056	1200	DCLK	
HS pulse width	thpw	1	6	40	DCLK	Note1
HS Blanking	thb	46			DCLK	Note1
HS Front Porch	thfp	16	210	354	DCLK	

			Values			
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Vertical Display Area	tvd		480		TH	
VS period time	tv	510	525	650	TH	
VS pulse width	tvpw	1	3	20	TH	Note2
VS Blanking	tvb		23		TH	Note2
VS Front Porch	tvfp	7	22	147	TH	

Note1: HS Blanking has included HS pulse width Note2: VS Blanking has included VS pulse width

Note: Frame rate $60 \pm 5 \text{Hz}$

Date: 2023/12/04 Page: 13/21

4 Optical Specifications

Item	Symbol Condition		Values			Unit	Remark
item			Min.	Тур.	Max.	Unit	Kemark
	θL	Φ=180 [°] (9 o'clock)	60	70	-		
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	60	70	-	degree	Note 1
(CR≥10)	θτ	Φ=90°(12 o'clock)	40	50	-		Note 1
	θв	Φ=270°(6 o'clock)	60	70	(-		
Response time	Ton		-	10	20	msec	Note 3
	Toff		-	15	30	msec	Note 3
Contrast ratio	CR		600	800	-	-	Note 4
	Wx	Normal θ=Φ=0°	0.26	0.31	0.36	-	Note 2
Color chromaticity	WY		0.28	0.33	0.38	-	Note 5 Note 6
Luminance	L		400	500	-	cd/m²	Note 6
Luminance uniformity	Yυ		70	75	-	%	Note 7

Test Conditions:

- 1. V_{CC} =3.3V, AV_{DD} =10V, I_L =240mA (Backlight current), the ambient temperature is 25 $^{\circ}$ C.
- 2. The test systems refer to Note 2.

Global LCD Panel Exchange Center

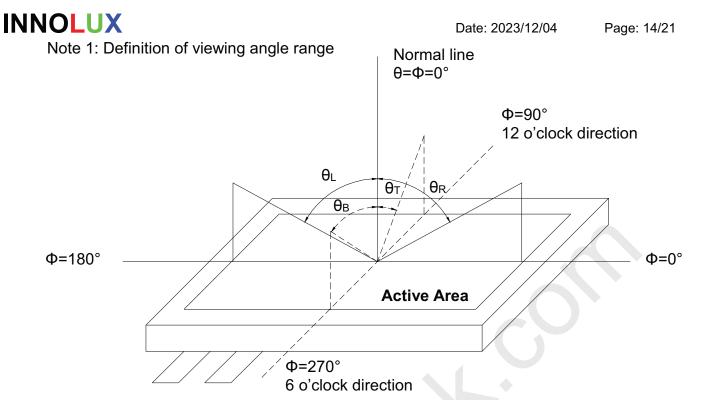


Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. The optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1°/Height: 500mm.)

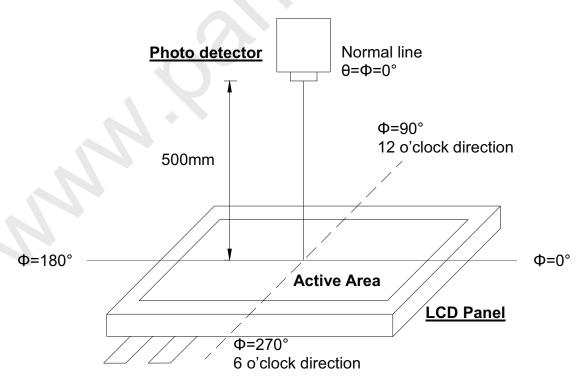


Fig. 4-2 Optical measurement system setup

Date: 2023/12/04 Page: 15/21

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

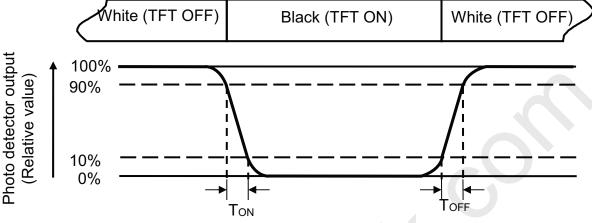


Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_L=240mA.

INNOLUX

Date: 2023/12/04 Page: 16/21

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W---- Active area width

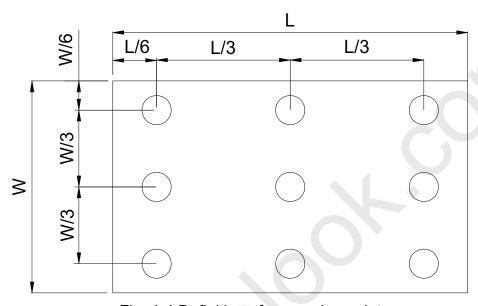


Fig. 4-4 Definition of measuring points

B_{max}: The measured maximum luminance of all measurement position. **B**_{min}: The measured minimum luminance of all measurement position.

Page: 17/21

Date: 2023/12/04

Item	Test C	Conditions	Remark
High Temperature Storage	Ta = 85°℃	240 hrs	Note 1, Note3, Note 4, Note5
Low Temperature Storage	Ta = -30°C	240hrs	Note 1, Note3, Note 4
High Temperature Operation	Ts = 85°C	240hrs	Note 2, Note3, Note 4, Note5
Low Temperature Operation	Ta = -30℃	240hrs	Note 1, Note3, Note 4
Operate at High Temperature and Humidity	+60°C, 90%RH	240 hrs	Note 3, Note4, Note5
Thermal Shock	-30°C/30 min ~ +85°C cycles, Start with colowith high temperature	Note 3, Note4, Note5	
Vibration Test	Frequency: 10 ~55~ SweepSweep time: 1.5G; Test time: 2hrs Y, Z.		
Mechanical Shock	100G 6ms,±X, ±Y, ±2 direction		
Package Vibration Test	1.47Grms X, Y, Z thr [Spectrum : 5Hz(0.0 100Hz(0.015G2/Hz)		
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6		
Electro Static Discharge	I	y Mode, 100pF/1500Ω act Mode, 150pF/330Ω lode, 150pF/330Ω	

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function tests, the product must have enough recovery time, at least 2 hours at room temperature.

at least 2 hears at reem temperature.

Date: 2023/12/04 Page: 18/21

Note 5: A certain level of Mura (non-uniformity) of dark / black image will happen several days after high temperature testing (H.T.T.). There is a slowly part recovery over a long time (several months). Such a long exposure time like in H.T.T. will normally not happen in a real application. Therefore the test H.T.T. was introduced to simulate cycles with normal conditions in-between but with the same total exposure time what show a significant reduced Mura.

The root cause is related to tension generated due to different amount of shrinking in the stack of layers in the polarizer sheet. The effect is more significant on larger displays like this size. An investigation into alternative polarizer material showed that there is no better alternative currently available.

Date: 2023/12/04 Page: 19/21

6 General Precautions

6.1 Safety

- 1. Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.
- 2. The temperature for using is no more than this product SPEC, otherwise, only promise the function is OK, but the quality may be changed.

6.2 Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

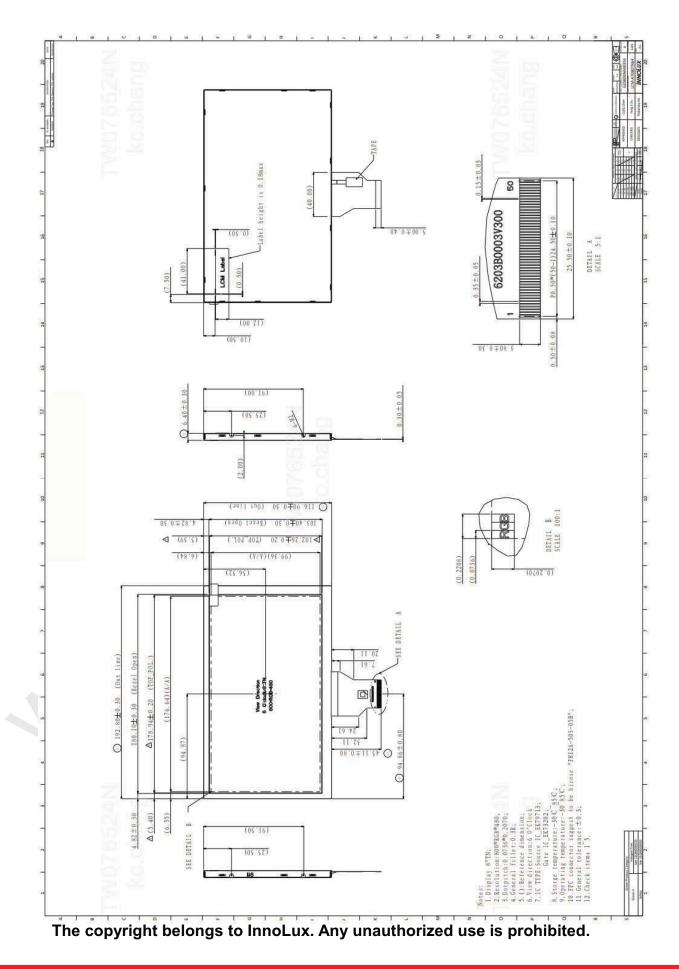
6.3 Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4 Storage

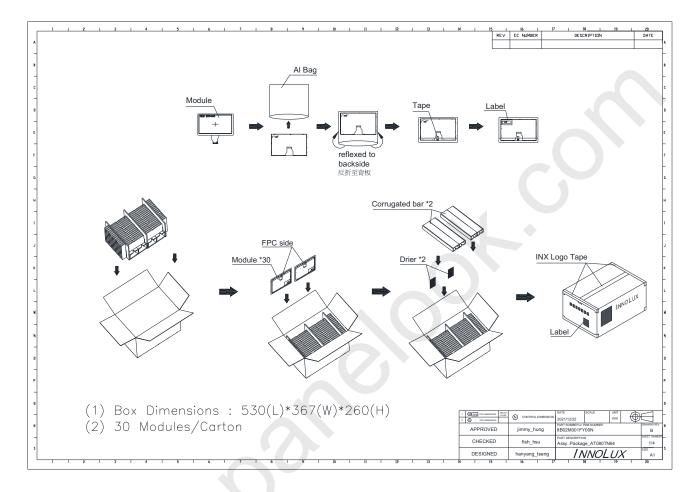
- 1. Store the module in a dark room where must keep at 25±10°C and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
- 3. Store the module in an anti-electrostatic container or bag.

6.5 Cleaning


- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

Date: 2023/12/04 Page: 20/21

7 Mechanical Drawing



Date: 2023/12/04 Page: 21/21

8 Package Drawing

8.1 Packaging Drawing

