$\langle \mathcal{P} \rangle$

PRODUCT SPECIFICATION

□ Tentative Specification

Preliminary Specificaton

□ Approval Specification

MODEL NO.: G101ICE SUFFIX: LH1

SIGNATURE

Customer:

APPROVED BY

Name / Title Note

Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By
陳立錚	林秋森	黄致偉

Version 1.3

22 March 2022

1 / 39

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURE	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
2.2 ELECTRICAL ABSOLUTE RATINGS	7
2.2.1 TFT LCD MODULE	
2.2.2 BACKLIGHT UNIT	
3. ELECTRICAL CHARACTERISTICS	
3.1 TFT LCD MODULE	
3.2 Vcc Power Dip Condition	
3.2 BACKLIGHT UNIT	
4. BLOCK DIAGRAM	
4.1 TFT LCD MODULE	
5. INPUT TERMINAL PIN ASSIGNMENT	
5.1 TFT LCD MODULE	
5.2 COLOR DATA INPUT ASSIGNMENT	
6. INTERFACE TIMING	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6.2 POWER ON/OFF SEQUENCE	
6.3 SCANNING DIRECTION	
7. OPTICAL CHARACTERISTICS	
7.1 TEST CONDITIONS	
7.2 OPTICAL SPECIFICATIONS	
8. RELIABILITY TEST CRITERIA	
9. PACKAGING	
9.1 PACKING SPECIFICATIONS	
9.2 PACKING METHOD	
9.3 UN-PACKING METHOD	
10. DEFINITION OF LABELS	
10.1 INX MODULE LABEL	
11. PRECAUTIONS	
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	
11.2 STORAGE PRECAUTIONS	27
Version 1.3 22 March 2022	2 / 39

\Diamond

群創光電

PRODUCT SPECIFICATION

11.3 OTHER PRECAUTIONS	28
12. MECHANICAL CHARACTERISTICS	29
Appendix. SYSTEM COVER DESIGN NOTICE	31

Version 1.3

22 March 2022

3 / 39

 \oslash

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page	Description
Ver 1.0	14 Mar 2022	All	v1.0 was first issued.
Ver 1.1	8 Apr 2022	30	Drawing update
Ver 1.2	13 Apr 2022	30	Drawing update (112.92 -> 119.92)
Ver 1.3	22 Apr 2022	11	4.1 Module update
		12	5.1 pin No. update Add Note(5)
		15	6.1 min. & Max. update
		26	10.1 label module add model name

Version 1.3

22 March 2022

4 / 39

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G101ICE-LH1 is a 10.1" TFT Liquid Crystal Display module with LED Backlight units and 30 pins LVDS interface. This module supports 1280 x 800 WXGA mode and can display 16.7M/ 262k colors. The LED driving device for Backlight is built in PCBA.

1.2 FEATURE

- WXGA (1280 x 800 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	216.96 (H) x 135.60 (V) (10.1" diagonal)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1280 x R.G.B x 800	pixel	-
Pixel Pitch	0.1695 (H) x 0.1695 (V)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M / 262K	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare	-	-
Module Power Consumption	(6.0)	W	Тур.

Version 1.3

22 March 2022

5/39

 $\langle P \rangle$

PRODUCT SPECIFICATION

1.5 MECHANICAL SPECIFICATIONS

lte	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	230.2	230.7	231.2	mm	
Module Size	Vertical(V)	152.05	152.55	153.05	mm	(1)
	Depth(D)	6.0	6.5	7.0	mm	
Bezel Area	Horizontal	217.66	218.96	219.26	mm	-
bezer Area	Vertical	137.3	137.6	137.9	mm	
A ativa A raa	Horizontal	-	216.96	-	mm	
Active Area	Vertical	-	135.6	-	mm	
We	ight	-	(300)	(315)	g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltom	Symbol	Val	lue	Unit	Note	
Item	Symbol	Min.	Max.	Unit		
Operating Ambient Temperature	Тор	-30	+80	°C	(1)(2)	
Storage Temperature	Тѕт	-40	+85	°C	(1)(2)	

Note (1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2)-Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 80°C.(Panel sureface temperature).

Version	1.3	9
---------	-----	---

22 March 2022

6 / 39

INNOLUX 群創光電

PRODUCT SPECIFICATION

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note		
nem	Symbol	Min.	Max.	Unit	Note		
Power Supply Voltage	VCC	-0.3	5.5	V	(1)		
Logic Input Voltage	Vin	-0.3	4.0	V	(1)		

2.2.2 BACKLIGHT UNIT

Itom	Symbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Unit		
Converter Voltage	Vi	-0.3	18	V	(1) , (2)	
Enable Voltage	EN	-0.3	5.5	V		
Backlight Adjust	Dimming	-0.3	5.5	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

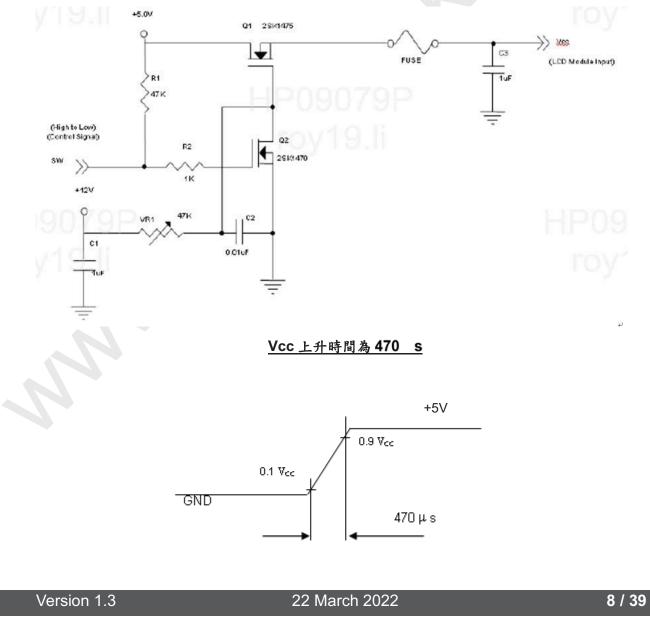
Version 1.3

22 March 2022

7/39

 \oslash

PRODUCT SPECIFICATION


3. ELECTRICAL CHARACTERISTICS

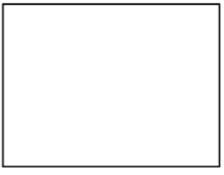
3.1 TFT LCD MODULE

Doromotor	Parameter		Value			Unit	Note
Falaillelel		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Vo	ltage	Vcc	4.5	5	5.5	V	-
Ripple Voltag	е	Vrp	-	-	(300)	mVp-p	
Inrush Currer	ıt	IINRUSH	-	-	(3.0)	А	(2)
Power Supply Current	White			(150)	(200)	mA	(3)a
Fower Supply Current	Black	100		(140)	(190)	mA	(3)b
LVDS differential inpu	it voltage	Vid	200	-	600	mV	(5)
LVDS common input	voltage	Vic	1.0	1.2	1.4	V	(5)
Differential Input Voltage for	"H" Level	VIH	-		100	mV	-
LVDS Receiver Threshold	"L" Level	VIL	-100	-		mV	-
Terminating Res	istor	R⊤	-	100	-	Ohm	-

Note (1)The module should be always operated within above ranges.

Note (2)Measurement Conditions:

PRODUCT SPECIFICATION

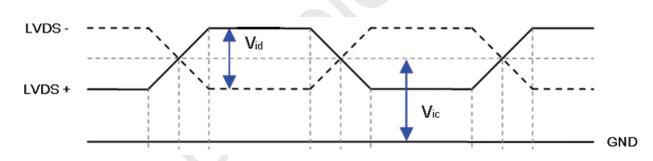

b. Black Pattern

群創光電 Note (3) The specified power supply current is under the conditions at V_{DD} =5V, Ta = 25 ± 2 °C, DC Current

and $f_v = 60$ Hz, whereas a power dissipation check pattern below is

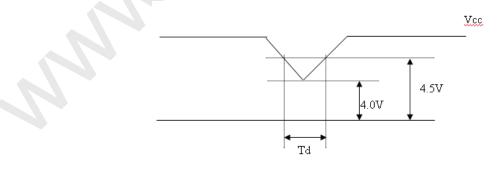
displayed.

a. White Pattern



Active Area

Active Area


Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

3.2 Vcc Power Dip Condition

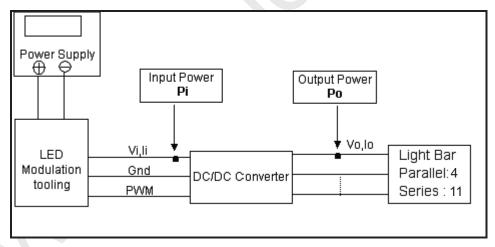
- Dip condition: $4.0V \le Vcc \le 4.5V$, Td $\le 20ms$

Version	1.3
---------	-----

22 March 2022

9/39

屏库:全球液晶屏交易中心


PRODUCT SPECIFICATION

NNOLUX 群創光電 3.3 BACKLIGHT UNIT

		r	ſ			r	
Parame	ator	Symbol		Value	•	Unit	Note
T aranno		Cymbol	Min.	Тур.	Max.	Onit	Note
Converter Inp	ut Voltage	Vi	10.8	12.0	13.2	V _{DC}	(Duty 100%)
Converter Input F	Ripple Voltage	Virp	-	-	350	mV	
Converter Inp	ut Current	li	-	(0.42)	(0.5)	A _{DC}	@ Vi = 12V (Duty 100%)
Converter Inrush Current		lirush	-	-	3.0	А	@ Vi rising time = 20ms (Vi =12V)
Input Power Consumption		Pi	-	(5.0)	(6.0)	W	(1),@ Vi = 12V (Duty 100%)
EN Control Level	Backlight on	ENLED	2.5	3.3	5.0		
EN CONTO Level	Backlight off	(BLON)	0		0.3		
DW/M Control Loval	PWM High Level	Dimming	2.5	3.3	5.0		
PWM Control Level	PWM Low Level	(E_PWM)	0	-	0.15		
PWN Noise	Range	VNoise	-	-	0.1	V	
PWM Control	Frequency	f _{PWM}	190	200	20k	Hz	(2)
DW/M Dimming Co		5		100	%	(2), Suggestion@ 190Hz≦ f _{PWM} <1kHz	
PWM Dimming Control Duty Ratio		-	20		100	%	(2), @ 1kHz≦ f _{PWM} ≦ 20kHz
LED Life	Time	LLED	50,000		-	Hrs	(3)

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

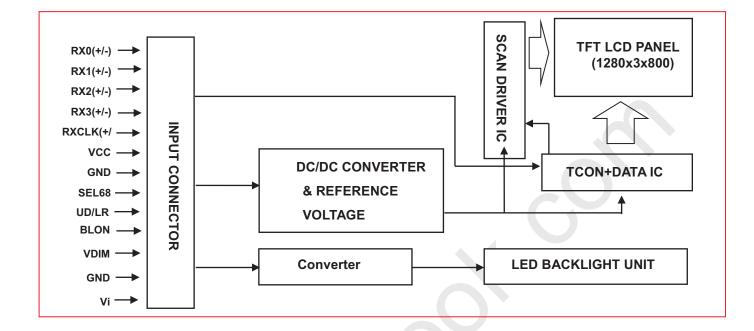
Note (2) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.

1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%.

If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon

on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.

Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ±2 °C and Duty 100% until the brightness becomes ≤ 50% of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.


Version 1.3	22 March 2022	10 / 39
	The copyright belongs to InnoLux. Any unauthorized use is prohibited.	

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Version 1.3

22 March 2022

11 / 39

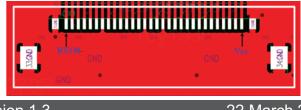
 $\langle \mathcal{P} \rangle$

PRODUCT SPECIFICATION

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin No.	Symbol	Function	Polarity	Note
1	VCC	Power supply 5V		(5)
2	VCC	Power supply 5V		
3	UD/LR	Reverse Scan Control, Low or NC à Normal Mode. High à Reverse Scan		(3)(4)
4	NC	Not connection, this pin should be open		
5	NC	Not connection, this pin should be open		
6	SEL68	LVDS 6/8 bit select function control, Low or NC \rightarrow 6 bit Input Mode.High \rightarrow 8bit Input Mode.		(3)(4)
7	NC	Not connection, this pin should be open		
8	NC	Not connection, this pin should be open		
9	LED_VCC	Converter input voltage 12V		
10	LED_VCC	Converter input voltage 12V		
11	LED_VCC	Converter input voltage 12V		
12	NC	Not connection, this pin should be open		
13	LED_GND	Converter ground		
14	LED_GND	Converter ground		
15	LED_GND	Converter ground		
16	LED_EN	Enable pin 3.3V		
17	LED_PWM	Backlight Adjust (PWM Dimming 190-210Hz,H: 3.3VDC, L: 0VDC)		
18	NC	Not connection, this pin should be open		
19	GND	Ground		
20	RXO3+	Positive LVDS differential data input. Channel O3	Positive	
21	RXO3-	Negative LVDS differential data input. Channel O3	Negative	
22	RXOC+	Positive LVDS differential clock input.	Positive	
23	RXOC-	Negative LVDS differential clock input.	Negative	
24	GND	Ground		
25	RXO2+	Positive LVDS differential data input. Channel O2	Positive	
26	RXO2-	Negative LVDS differential data input. Channel O2	Negative	
27	RXO1+	Positive LVDS differential data input. Channel O1	Positive	
28	RX01-	Negative LVDS differential data input. Channel O1	Negative	
29	RXO0+	Positive LVDS differential data input. Channel O0	Positive	
30	RXO0-	Negative LVDS differential data input. Channel O0	Negative	


Note (1) Connector Part No.: STM MSAK24025P30MB or I-PEX 20455-030E-76 or equivalent.

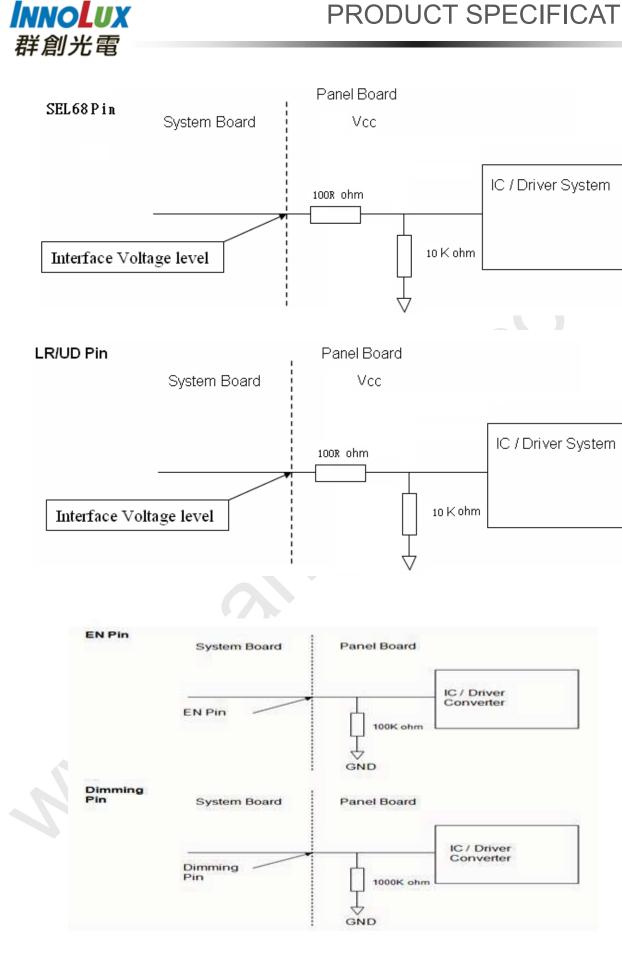
Note (2) User's connector Part No.: I-PEX 20453-030T-03 or equivalent

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".

Note (4)Interface optional pin has internal scheme as following diagram, Customer should keep the interface voltage level requirement which including panel board loading as below.

Note (5) Pin1 location is Power supply 5V to comply with **MECHANICAL CHARACTERISTICS**.

Version 1.3


22 March 2022

12 / 39

屏库:全球液晶屏交易中心

PRODUCT SPECIFICATION

Version 1.3

22 March 2022

13 / 39

群創光電

PRODUCT SPECIFICATION

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	Sig	nal										
	Color				R		-	-					Gre		-	-	-				Bl				
	· -· ·	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
 	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	Ś	:	:	:	:	:	:	:	:	:	:	
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 to a	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	÷	Ċ,	•	÷	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
ļ	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:		÷	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:		:		:	
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

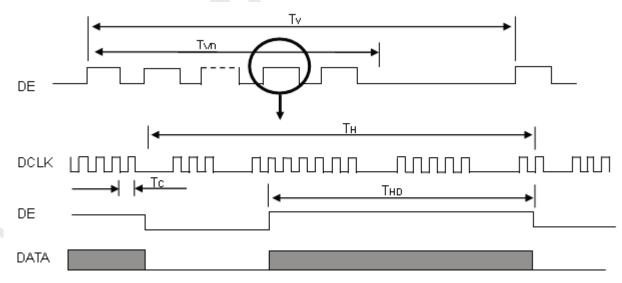
Version 1.3

22 March 2022

14 / 39

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

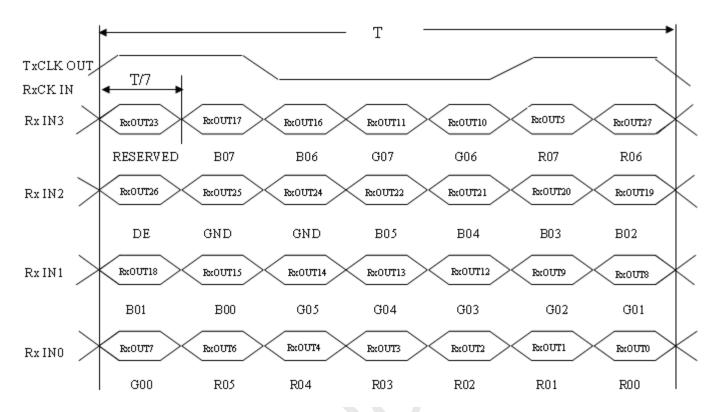
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	(60.40)	71.1	(74.7)	MHz	-
	Period	Tc	(16.55)	14.06	(13.38)	ns	
LVDS Clock	Input cycle to cycle jitter	T _{rcl}			200	ns	(a)
	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(b)
	Spread spectrum modulation range	F _{clkin_mod}	-	-	1.02*Fc	MHz	
	Spread spectrum modulation frequency	F_{SSM}	-	-	200	KHz	(c)
	Frame Rate	Fr	(50)	60	(60)	Hz	Tv=Tvd+Tvb
Vertical Display Term	Total	Τv	(810)	823	(900)	Th	-
Vertical Display Territ	Active Display	Tvd	800	800	800	Th	-
	Blank	Tvb	10	23	(100)	Th	-
Harizantal Dianlas	Total	Th	(1362)	1440	(1480)	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	1280	1280	1280	Тс	-
TOTT	Blank	Thb	(82)	160	(170)	Тс	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

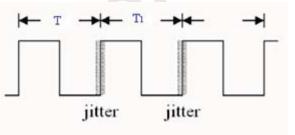
Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

Version 1.3

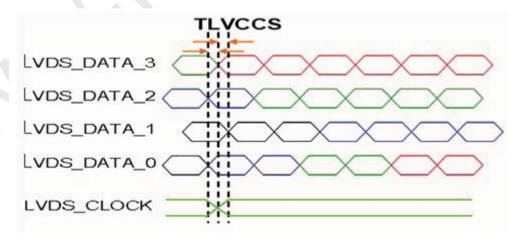
22 March 2022


15 / 39

 \bigotimes



PRODUCT SPECIFICATION

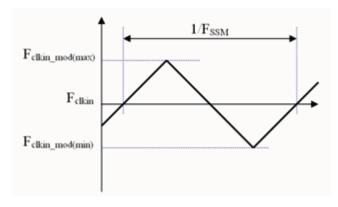

TIMING DIAGRAM of LVDS

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 - TI

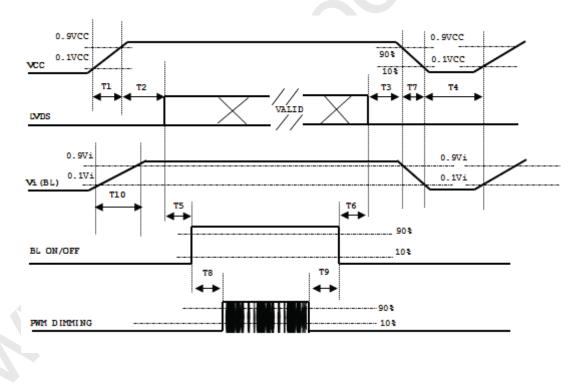
Note (b) Input Clock to data skew is defined as below figures.

Version 1.3

22 March 2022


16 / 39

InnoLux


PRODUCT SPECIFICATION

群創光電 Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Version 1.3

22 March 2022

17 / 39

INNOLUX 群創光電

PRODUCT SPECIFICATION

Deremeter		Value		Units
Parameter	Min	Тур Ма		Units
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
T5	450	-	-	ms
Т6	200	-	-	ms
T7	10	-	100	ms
Т8	10	-	-	ms
Т9	10	-	-	ms
T10	20	-	50	ms

Note:

(1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.

(2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.

(3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.

(4) T4 should be measured after the module has been fully discharged between power off and on period.

(5) Interface signal shall not be kept at high impedance when the power is on.

(6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.

(7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec"..

Version 1.3

22 March 2022

18 / 39

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

PCBA on the bottom side

Fig.2 Reverse Scan

PCBA on the bottom side

- Fig. 1 Normal scan (pin 28, UD/LR = Low or NC)
- Fig. 2 Reverse scan (pin 28, UD/LR = High)

Version 1.3

22 March 2022

19/39

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	oC			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	According to typical value and tolerance in					
Input Signal	"ELECTRICAL CHARACTERISTICS"					
PWM Duty Ratio	D	100	%			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

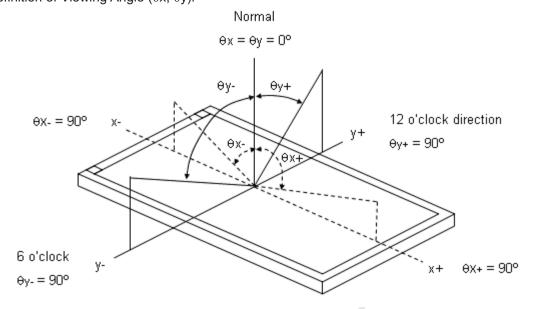
Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx		(0.599)	(0.649)	(0.699)		
	Reu	Ry		(0.290)	(0.340)	(0.390)		
	Green	Gx		(0.270)	(0.320)	(0.370)		
Color Chromaticity	Green	Gy		(0.556)	(0.606)	(0.656)		(1) (5)
	Blue	Bx	θ X=0°, θ Υ =0 °	(0.099)	(0.149)	(0.199)	-	(1), (5)
	Diue	Ву	Grayscale Maximum	(0.005)	(0.055)	(0.105)		
	\\/bita	Wx		(0.263)	(0.313)	(0.363)		
	White	Wy		(0.279)	(0.329)	(0.379)		
Center Luminance of White		LC		(400)	(500)	-	nits	(4), (5)
Contrast	Ratio	CR		(600)	(800)	-	-	(2), (5)
Respons	o Timo	TR	θX=0°, θY =0°	-	(13)	(18)	-	(2)
Respons	e fille	TF	$\theta = 0$, $\theta = 0$	-	(12)	(17)	-	(3)
White Va	riation	δW	θ X=0°, θY =0 °	(70)	-	-	%	(5), (6)
	Horizontal	θ X +		(80)	(88)	-		
	Honzontai	θΧ-	CR≧10	(80)	(88)	-	Dog	(1), (5)
Viewing Angle	Vertical	θ Y +		(80)	(88)	-	Deg.	
	Ventical	θΥ-		(80)	(88)	-		

Definition:

Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63) White : Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B)

	Ve	rsion	1	.3
--	----	-------	---	----


22 March 2022

20 / 39

\Diamond

PRODUCT SPECIFICATION

群創光電 Note (1)Definition of Viewing Angle (θx, θy):

Note (2)Definition of Contrast Ratio (CR):

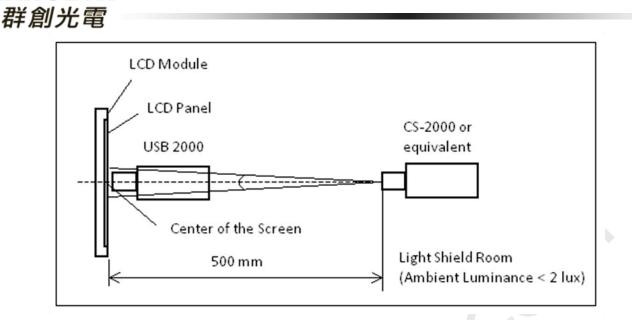
The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

Note (3)Definition of Response Time (T_R , T_F):

Note (4) Definition of Luminance of White (L_C):

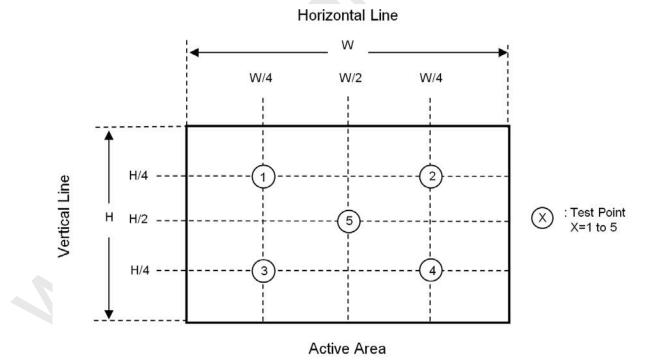
Measure the luminance of White at center point.


Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.

Version 1	.3	22 March 2022	21 / 39
	The copyright belongs t	to InnoLux. Any unauthorized use is prohibited.	

PRODUCT SPECIFICATION



Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points.

Luminance of White : L(X), where X is from 1 to 5.

 $\delta W = \frac{\text{Minimum [L(1) to L(5)]}}{\text{Maximum [L(1) to L(5)]}} \quad X \ 100\%$

Version 1.3

22 March 2022

22 / 39

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	$85^\circ C$, 240 hours	
Low Temperature Storage Test	-40°C , 240 hours	
Thermal Shock Storage Test	-30° C, 0.5 hour←→ 70° C, 0.5 hour; 100cycles, 1 hour/cycle)	(1)(2)
High Temperature Operation Test	80° C, 240 hours	(1),(2) (4),(5)
Low Temperature Operation Test	-30°C , 240 hours	
High Temperature & High Humidity Operation Test	60℃, RH 90%, 240 hours	
ESD Test (Operation)	150pF, 330Ω, 1 sec/cycle Condition 1 : panel contact, ±8 KV Condition 2 : panel non-contact ±15 KV	(1), (4)
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$ direction	
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction	(2), (3)

Note (1)There should be no condensation on the surface of panel during test,

- Note (2) Temperature of panel display surface area should be 80°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Version 1.3

22 March 2022

23 / 39

群創光電

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 28pcs LCD modules / 1 Box
- (2) Box dimensions: 435(L) X 350 (W) X 275 (H) mm
- (3) Weight: approximately 12.02Kg (28 modules per box)

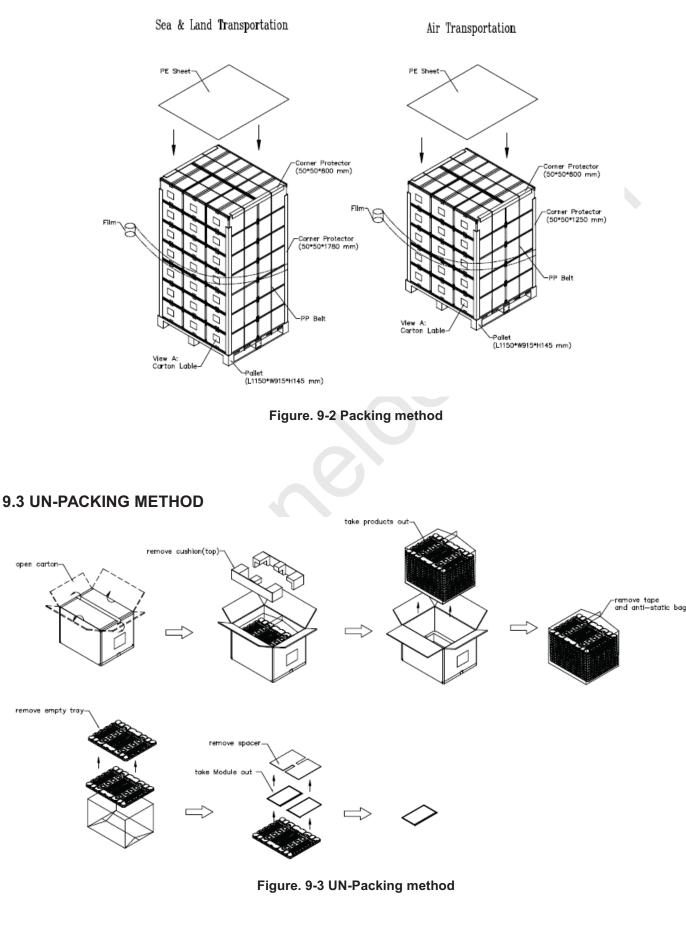
9.2 PACKING METHOD

<image>

Version 1.3

22 March 2022

24 / 39



25/39

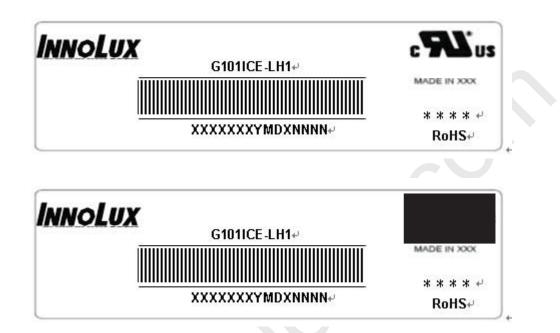
PRODUCT SPECIFICATION

Version 1.3

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

22 March 2022

屏库:全球液晶屏交易中心



PRODUCT SPECIFICATION

10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Note (1) Safety Compliance(UL logo) will open after C1 version.

- (a) Model Name: G101ICE-LH1
- (b) * * * * : Factory ID
- (c) Serial ID: X X X X X X X X Y M D X N N N N

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

	Ve	rsion	1.	.3
--	----	-------	----	----

22 March 2022

26 / 39

INNOLUX 群創光電 —

PRODUCT SPECIFICATION

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

(1)When storing for a long time, the following precautions are necessary.

- (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
- (b) The polarizer surface should not come in contact with any other object.
- (c) It is recommended that they be stored in the container in which they were shipped.
- (d) Storage condition is guaranteed under packing conditions.
- (e)The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3)It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4)It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

22 March 2022

27 / 39

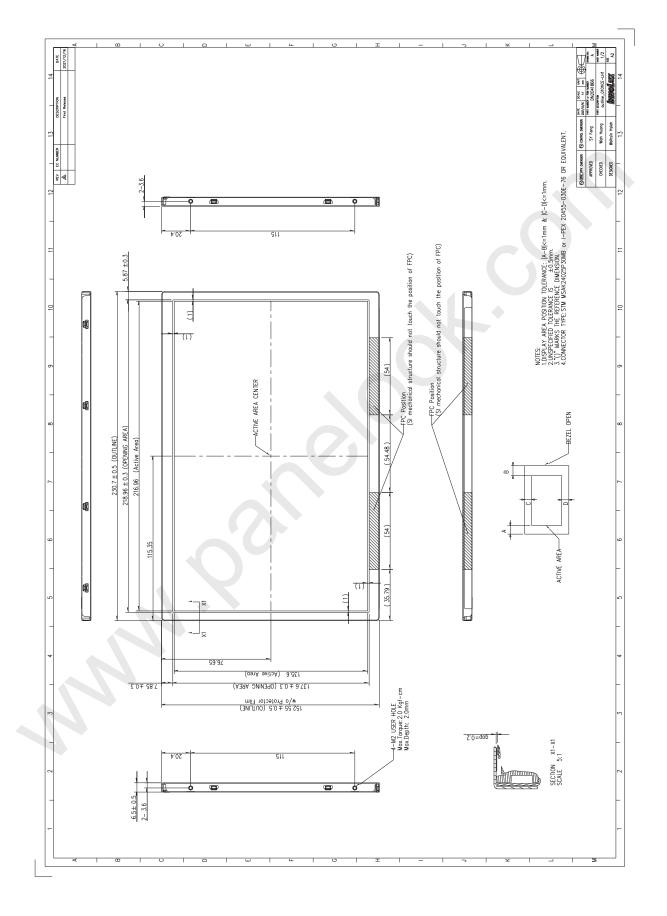
Ø

NNOLUX 群創光電 11.3 OTHER PRECAUTIONS

- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
- (3) Abnormal condition just means conditions except normal condition.

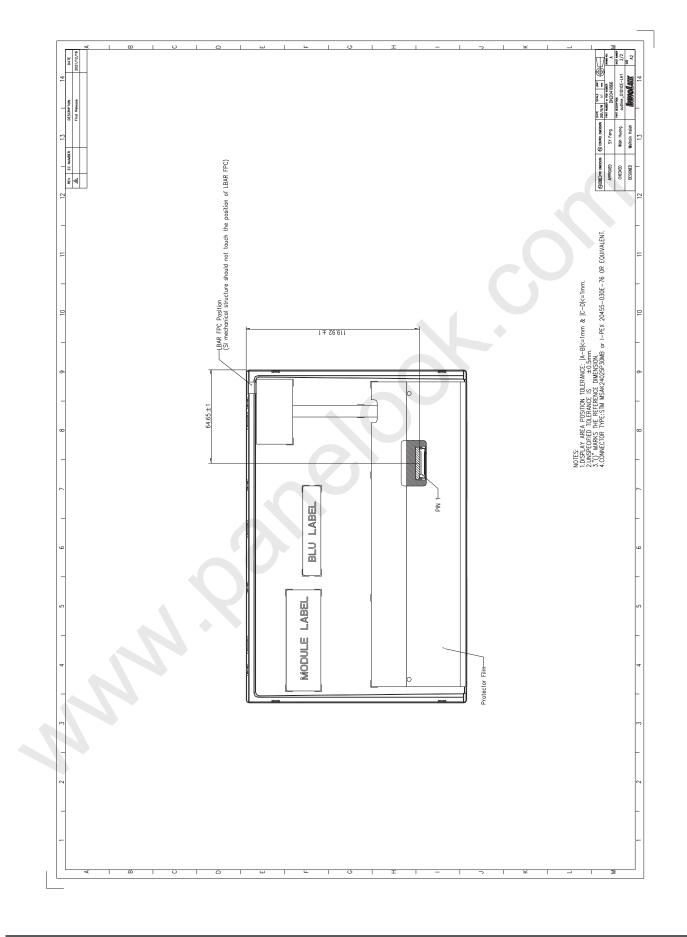
Version 1.3

22 March 2022


28 / 39

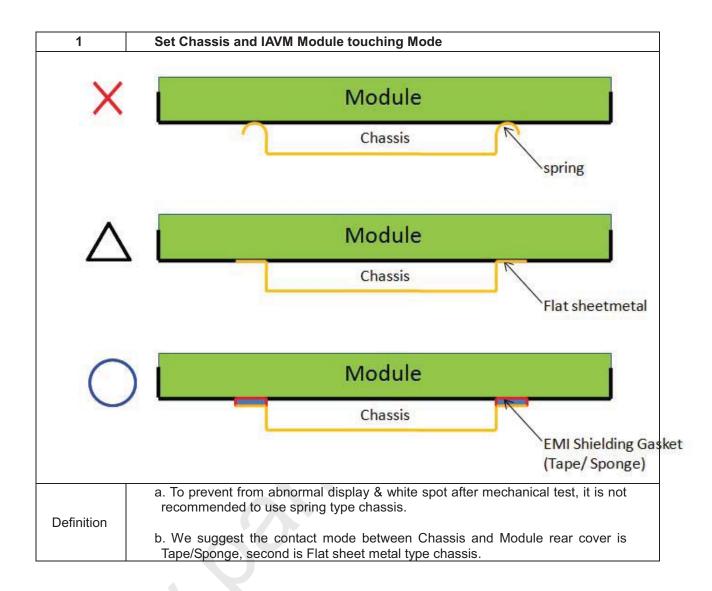
群創光電

PRODUCT SPECIFICATION


Version 1.3

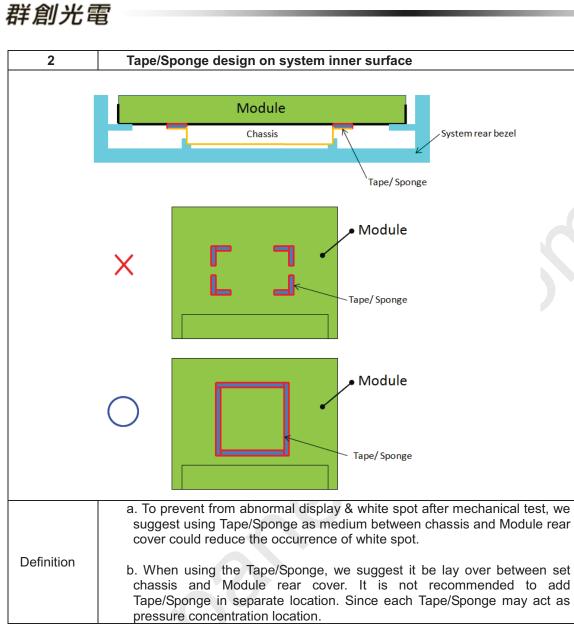
22 March 2022

29/39


Version 1.3

22 March 2022

Appendix. SYSTEM COVER DESIGN NOTICE

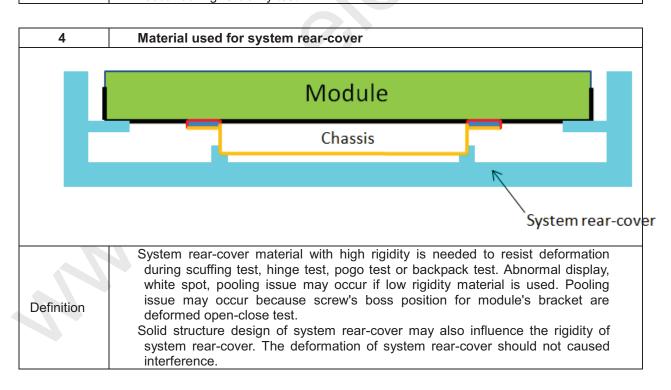

Version 1.3

22 March 2022

31 / 39

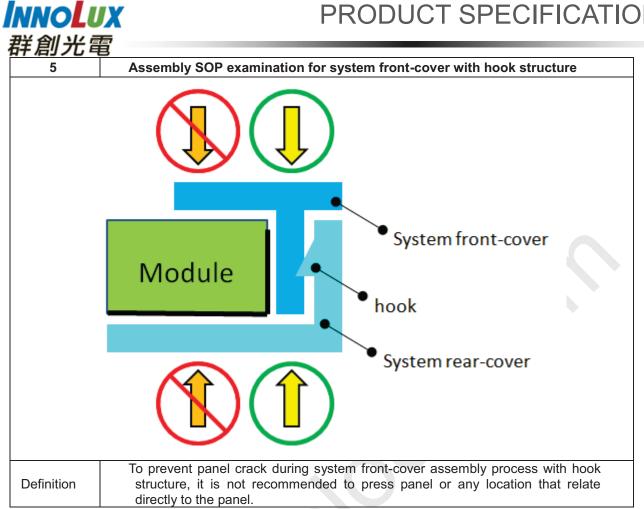
PRODUCT SPECIFICATION

Version 1.3


22 March 2022

32 / 39

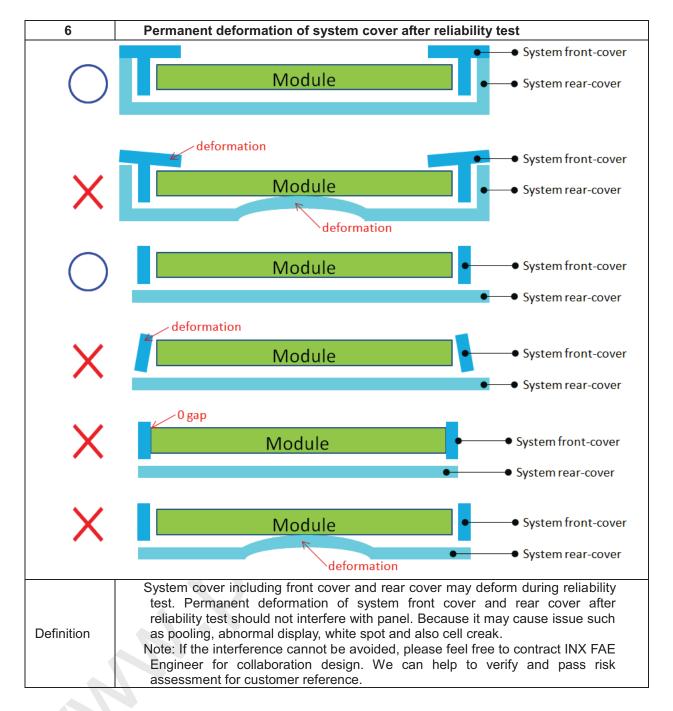
3	System inner surface examination
	Module PCBA
	Module
	Burr Burr PCBA Chassis Step
System cover inner surface	
Definition	 a. The hatch area on Module PCBA should keep at least 1mm gap(X,Y,Z direction) to any structure with system cover inner surface. b. Burr, Step, PCB protrusion may cause stress concentration. White spot may occur during reliability test.



Version 1.3

22 March 2022

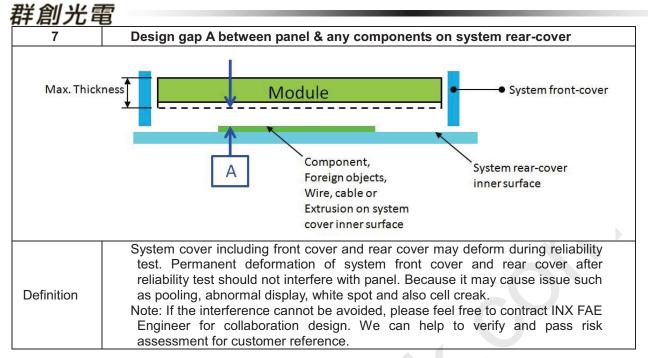
33 / 39

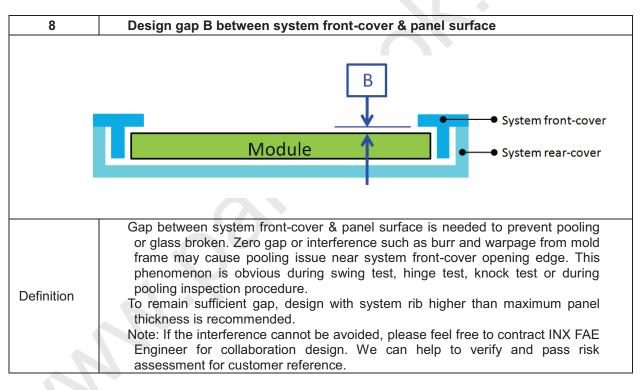


Version 1.3

22 March 2022

34 / 39

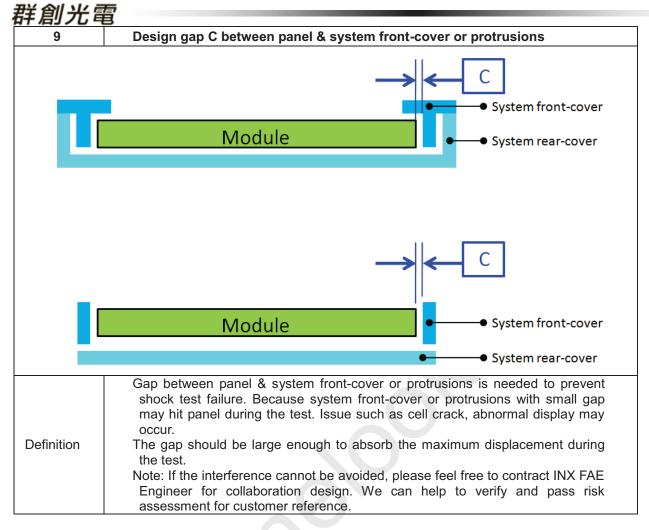

Version 1.3


22 March 2022

35 / 39

Ø

PRODUCT SPECIFICATION


Version 1.3

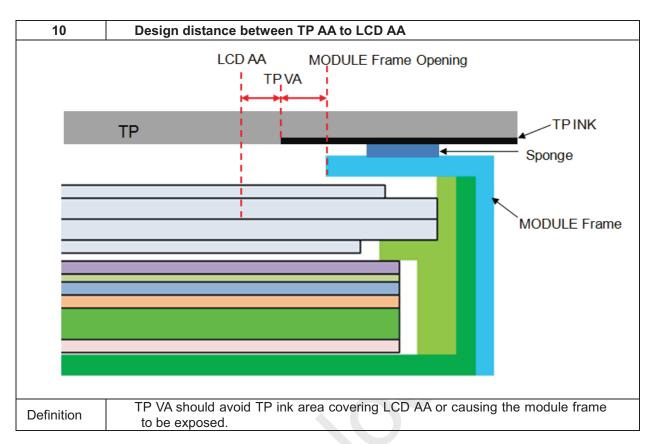
22 March 2022

36 / 39

\Diamond

PRODUCT SPECIFICATION

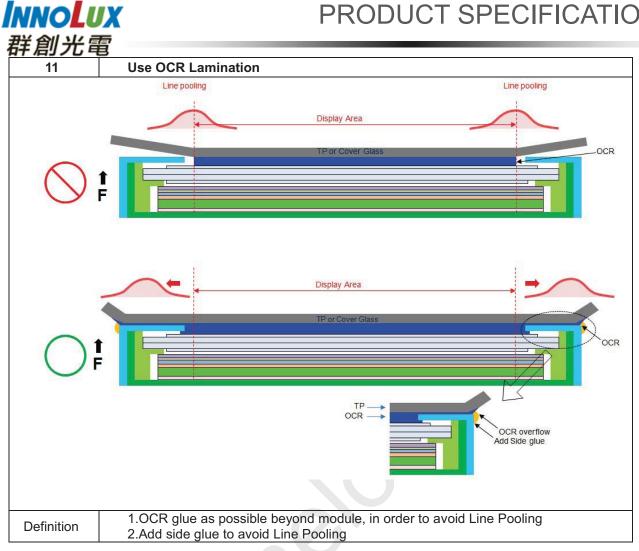
Version 1.3


22 March 2022

37 / 39

 \oslash

PRODUCT SPECIFICATION



Version 1.3

22 March 2022

38 / 39

Version 1.3

22 March 2022

39/39