

Doc. Number :

] Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: G156HCE SUFFIX: E01

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for y signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By		
陳立錚	林秋森	阮志昌		

Version	2.4
---------	-----

19 July 2023

1 / 30

INNOLUX 群創光電 PRODUCT SPECIFICATION

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
2.1 CONNECTOR TYPE	
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	
3.2.1 TFT LCD MODULE	6
3.2.2 BACKLIGHT CONVERTER	
4. ELECTRICAL SPECIFICATIONS	
4.1 FUNCTION BLOCK DIAGRAM	7
4.2. INTERFACE CONNECTIONS	7
4.3 ELECTRICAL CHARACTERISTICS	9
4.3.1 LCD ELETRONICS SPECIFICATION	9
4.3.2 LED CONVERTER SPECIFICATION	12
4.3.3 BACKLIGHT UNIT	13
4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS	13
4.4.1 ELECTRICAL SPECIFICATIONS	13
4.4.2 COLOR DATA INPUT ASSIGNMENT	15
4.5 DISPLAY TIMING SPECIFICATIONS	16
4.6 POWER ON/OFF SEQUENCE	17
5. OPTICAL CHARACTERISTICS	
5.1 TEST CONDITIONS	20
5.2 OPTICAL SPECIFICATIONS	20
6. RELIABILITY TEST ITEM	24
7. PACKING	25
7.1 PACKING SPECIFICATIONS	25
7.2 PACKING METHOD	25
7.3 PALLET	26
7.4 UN-PACK METHOD	26
8. MODULE LABEL	27
8.1 INX MODULE LABEL	27
9. PRECAUTIONS	
9.1 ASSEMBLY AND HANDLING PRECAUTIONS	28

Version 2.4

19 July 2023

2 / 30

INNOLUX 群創光電

PRODUCT SPECIFICATION

Α	ppendix. OUTLINE DRAWING	. 30
	9.6 OTHER	. 29
	9.5 SAFETY STANDARDS	.29
	9.4 SAFETY PRECAUTIONS	.28
	9.3 OPERATION PRECAUTIONS	. 28
	9.2 STORAGE PRECAUTIONS	
		00

Version 2.4

19 July 2023

3 / 30

 \oslash

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page	Description
2.0	2019.05.17	ALL	Spec Ver.2.0 was first issued.
2.1	2020.04.24	20	Color Chromaticity White (Wx/ Wy) : from (0.313/0.329)±0.05 to (0.305/0.340) ±0.03 .
	2020.04.24	30	Modify 2D drawing
2.2	2020.08.20	20	Contrast Ratio min from 500:1 to 700:1.
		24	High Temperature & High Humidity Operation Test from 60°C, 90%RH to 50°C, 80%RH.
2.3	2021.03.5	5	Power Consumption: Total from 10.38 W to 11.1W (Max.)
2.4	2022.08.06	16	Add Frame rate spec max to 70Hz .

Version 2.4

19 July 2023

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G156HCE-E01 is a 15.6" (15.6" diagonal) TFT Liquid Crystal Display IAV module with LED Backlight unit and 40 pins eDP interface. This module supports 1920 x 1080 FHD AAS mode and can display 16.7M colors

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	15.6 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.17925 (H) x 0.17925 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Luminance, White	450	Cd/m2	
Color Gamut	72%	NTSC	
Power Consumption	Total 11.1 W (Max.) @ cell 1.5W (Max.), (BL 9.6 W (Max.)		(1)

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3

V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas mosaic pattern is displayed.

2. MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
Madula	Horizontal (H)	351.54	351.84	352.14	mm	
Module Size	Vertical (V)	208.58	208.88	209.18	mm	(1)(2)
0126	Thickness (T)	-	-	6.5	mm	
Active Area	Horizontal	-	344.16	-	mm	
Active Area	Vertical	-	193.59	-	mm	
We	eight	-	550		g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Dimensions are measured by caliper.

2.1 CONNECTOR TYPE

Please refer appendix outline drawing for detail design.

Connector 1 Part No.: IPEX 20455-040E-76 User's connector Part No: IPEX 20453-040T-03

Connector 2 Part No.: ACES 50620-00501-001

Version	2.4

19 July 2023

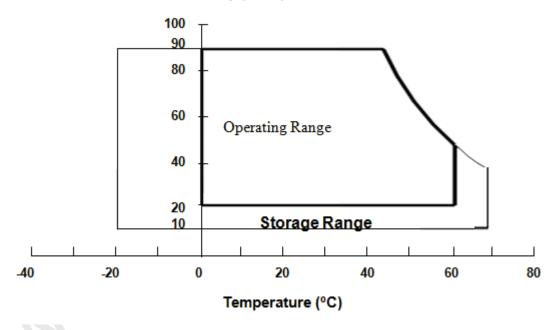
 $\langle P \rangle$

PRODUCT SPECIFICATION

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Noto	
nem	Symbol	Min.	Max.	Unit	Note	
Storage Temperature	TST	-20	+70	°C	(1)(2)	
Operating Ambient Temperature	TOP	0	+60	°C	(1)(2)	


Note (1) Temperature and relative humidity range is shown in the figure below.

(a) 90 %RH Max. (Ta \leq 40 °C).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note(2) The absolute maximum rating values of this product are not allowed to be exceeded at any times. The module should not be used over the absolute maximum rating value. It will causepermanently unrecoverable function fail in such an condition

Relative Humidity (%RH)

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note	
item	Gymbol	Min.	Max.	Onic	Note	
Power Supply Voltage	Vcc	-0.3	4.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	4.0	V	(1)	

Version 2.4

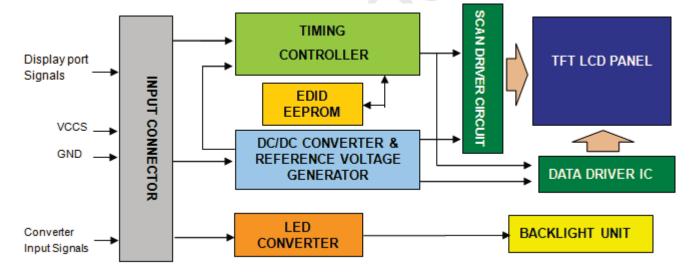
19 July 2023

6 / 30

 $\langle \mathcal{P} \rangle$

PRODUCT SPECIFICATION

3.2.2 BACKLIGHT CONVERTER


ltom	Symbol		Value		Unit	Note	
ltem	Symbol	Min.	Тур	Max.	Unit	Note	
Converter Voltage	LED_V_{in}	0	12.0	18.0	V	(1), (2)	
Enable Voltage	LED_EN	0	3.3	5.5	V	Duty=100%	
Backlight Adjust	LED_PWM	0	3.3	5.5	V	(1), (2) Pulse Width ≤ 10 msec. and Duty $\leq 10\%$	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 °C (Refer to 4.3.3 and 4.3.4 for further information)

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved for LCD test)	
2	NC	No Connection (Reserved for LCD test)	
3	NC	No Connection (Reserved for LCD test)	
4	NC	No Connection (Reserved for LCD test)	
5	NC	No Connection (Reserved for LCD test)	
6	VDD	USB power	
7	VDD	USB power	
8	VSS	USB GND	

Version 2.4

19 July 2023

7 / 30

INNOLUX 群創光電

PRODUCT SPECIFICATION

9	D+	USB D+	
10	D-	USB D+	
11	NC	No Connection (Reserved for LCD test)	
12	LED VCCS	BL Power	
13	LED VCCS	BL Power	
14	LED_VCCS	BL Power	
15	LED_VCCS	BL Power	
16	NC	No Connection (Reserved for LCD test)	
17	NC	No Connection (Reserved for LCD test)	
18	LED_PWM	PWM Dimming Control Signal of LED Converter	
19	LED_EN	BL_Enable Signal of LED Converter	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	
22	BL_GND	BL Ground	
23	BL_GND	BL Ground	
24	HPD	Hot Plug Detect	
25	GND	Ground	
26	GND	Ground	
27	NC	No Connection (Reserved for LCD test)	
28	VCCS	Power Supply +3.3 V (typical)	
29	VCCS	Power Supply +3.3 V (typical)	
30	GND	Ground	
31	AUX-	Complement Signal-Auxiliary Channel	
32	AUX+	True Signal-Auxiliary Channel	
33	GND	Ground	
34	ML0+	True Signal-Main Lane 0	
35	ML0-	Complement Signal-Lane 0	
36	GND	Ground	
37	ML1+	True Signal-Main Lane 1	
38	ML1-	Complement Signal-Lane 1	
39	GND	Ground	
40	NC	No Connection (Reserved for LCD test)	

Note (1)The first pixel is odd as shown in the following figure.

Version 2.4

19 July 2023

8 / 30

 1.1
 1.2
 1.3
 1.4

 2.1
 2.2

 3.1

 Pitch

Pitch
Pitch
Wmx.

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Paramete		Symbol		Value		Unit	Note
Falallete	51	Symbol	Min.	Тур.	Max.	Onit	NOLE
Power Supply	Voltage	VCCS	3.0	3.3	3.6	V	(1)
Ripple Volta	age	V _{RP}	-	50	-	mV	(1)
Inrush Curr	ent	I _{RUSH}	-	-	1.5	A	(1),(2)
Peak Curre	Peak Current				1.5	A	(1),(2)
Dewer Supply Current	Mosaic			198	237	mA	(3)a
Power Supply Current	Black			176	211	mA	(3)
	High Level		2.25	-	2.75	V	(5)
HPD	Low Level		0	-	0.4	V	(5)
HPD Impeda	ance	R _{HPD}	30K			ohm	(4)

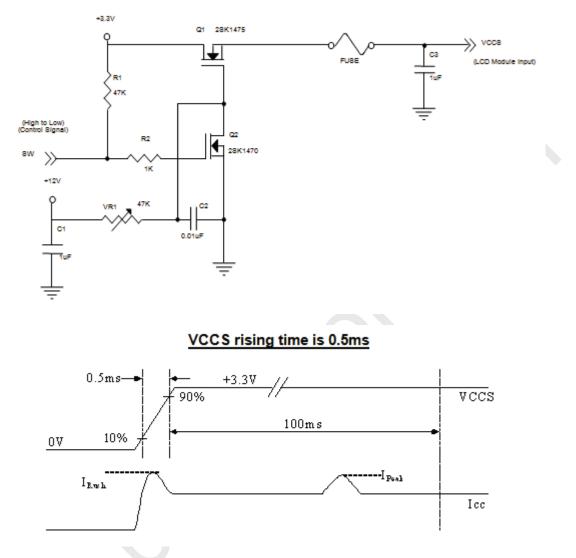
Note (1) The ambient temperature is Ta = 25 ± 2 °C.

Note (2) I_{RUSH} : the maximum current when VCCS is rising

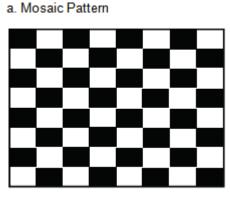
 $I_{\mbox{\scriptsize Peak}}$: the maximum current of the first 100ms after power-on

Version 2.4

19 July 2023


9 / 30

Xmax



Measurement Conditions: Shown as the following figure. Test pattern: black.

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Active Area

Version 2.4

 $\langle p \rangle$

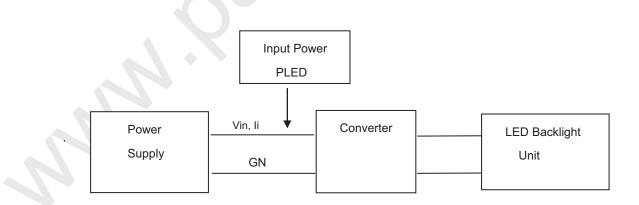
PRODUCT SPECIFICATION

- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.
- Note (5) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action.

Version 2.4

19 July 2023

 $\langle p \rangle$


PRODUCT SPECIFICATION

4.3.2 LED CONVERTER SPECIFICATION

Param	otor	Symbol		Value		Unit	Note
i arain		Symbol	Min.	Тур.	Max.	Onic	NOLE
Converter Power	Supply Voltage	LED_Vin	10.8	12.0	13.2	V	
Converter Power	Supply Current	li	0.6	0.8	1.0	А	@LED_Vin= 12V Duty=100%
Converter Input	Rush Current	lirsh			2	А	@LED_Vin rising = 1mS
Power Con	P _{LED}			9.6	W	@ LED_Vin = 12V Duty=100%	
EN Control Level	Backlight on	LED EN	2.0	3.3	5.5	V	
	Backlight off		0	0	0.15	· · ·	
PWM Control Level	PWM High Level	LED PWM	2.0	3.3	5.5		
	PWM Low Level		0	0	0.15	v	
PWM Control		10		100	%		
PWM Control	Frequency	f _{PWM}	190	200	20k <	Hz	
LED Life	L	50,000			Hrs	(2)	

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = $25\pm2^{\circ}$ C and Duty 100% until the brightness becomes \leq 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift ...

Version 2.4

19 July 2023

- 05 - 0.00

PRODUCT SPECIFICATION

4.3.3 BACKLIGHT UNIT

					Ia = 2	25 ± 2 °C
Devenenter	Currence of		Value		L lucit	Nete
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Power Supply Voltage	VL	23.8	28.4	19.7	V	
LED Light Bar Power Supply Current	IL		47		mA	(1)(2)(Duty100%)
Power Consumption	PL			8.63	W	(3)
LED Life Time	LBL	50000	-	-	Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

- Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.
- Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)
- Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 20.5 mA (Per EA) until the brightness becomes $\leq 50\%$ of its original value.

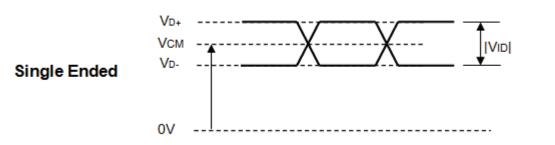
4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS

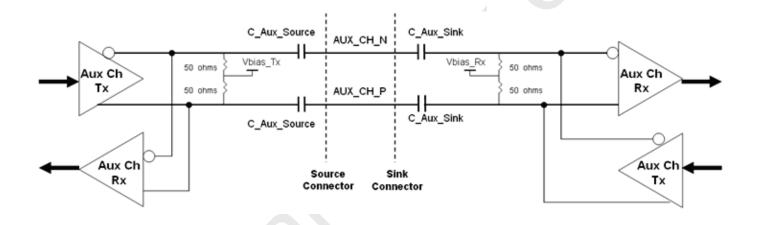
4.4.1 ELECTRICAL SPECIFICATIONS

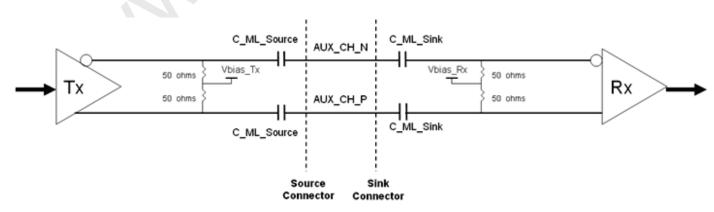
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(4)
AUX AC Coupling Capacitor	C_Aux_Source	75		200	nF	(2)
Main Link AC Coupling Capacitor	C_ML_Source	75		200	nF	(3)
DPCD Version (Address 00000h)	-		0x11h		-	(5)

Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPortTM Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.

Version 2.4


19 July 2023


群創光電


PRODUCT SPECIFICATION

Note (2) Recommended eDP AUX Channel topology is as below and the AUX AC Coupling Capacitor (C_Aux_Source) should be placed on the source device.

Note (3) Recommended Main Link Channel topology is as below and the Main Link AC Coupling Capacitor (C_ML_Source) should be placed on the source device.

Note(4) The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

Version 2.4	19 July 2023	14 / 30

INNOLUX 群創光電

PRODUCT SPECIFICATION

4.4.2 COLOR DATA INPUT ASSIGNMENT

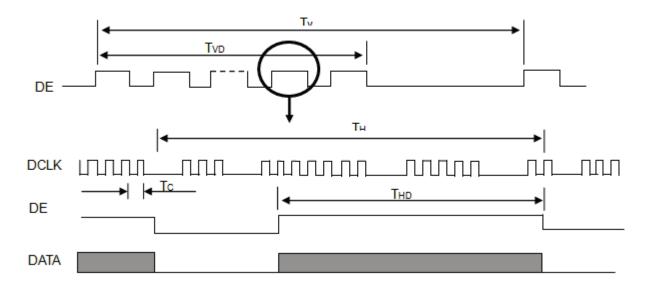
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												Da		Sign	al										
	Color				Re									een							Blu				
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3		G1	G0	B7	B6	B5		B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crew	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:		:	•	1	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:	:	:	:	:	:	:	÷			:	:	:	:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:		:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale	:	:	:	:	:	:			:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	:	:		÷	1	:			:		:		:	:	:	:	:	:	:	:	:	:	:	÷	
Scale						:	:	:			:	:	:	÷	:	:	:	:	÷		:	:	:	:	
Of	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	Õ	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 2.4

19 July 2023



4.5 DISPLAY TIMING SPECIFICATIONS

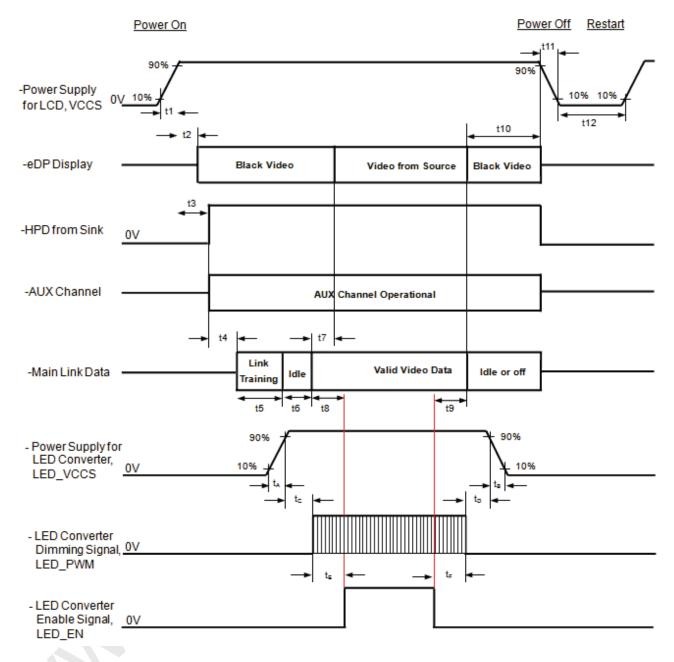
The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	148.9	152.82	175	MHz	-
	Frame rate	Fr	60	60	70	Hz	
	Vertical Total Time	TV	1128	1132	1136	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
DE	Vertical Active Blanking Period	TVB	48	52	56	TH	-
	Horizontal Total Time	TH	2200	2250	2260	Тс	
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-
	Horizontal Active Blanking Period	THB	280	330	340	Тс	-

INPUT SIGNAL TIMING DIAGRAM

Note(2) The Input Signal must operate at eDP 2 lane.

Note(3) The TV(=TVD+TVB) must be integer, otherwise, this module would operate abnormally


19 July 2023

4.6 POWER ON/OFF SEQUENCE

Version 2.4

19 July 2023

 \oslash

PRODUCT SPECIFICATION

Timing Specifications

1 Power rail rise time, 10% to 90% Source 0.5 10 ms - 12 Delay from LCD,VCCS to black video generation Sink 0 200 ms Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes: 2 and 3 below) 13 Delay from LCD,VCCS to HPD high Sink 0 200 ms Sink AUX Channel must be operational upon HPD high to link training initialization 14 Delay from HPD high to link training to link training duration Source 0 - ms Allows for Source to read Link capability and initialize 16 Link training duration Source 0 - ms Dependant on Source link training protocol 17 Delay from valid video data from Source to video on display Sink 0 50 ms Source stable Source stable Source must assure display video is stable Source mus	Parameter	Description	Reqd. By	Va Min	alue Max	Unit	Notes
12 Delay from LCD,VCCS to black video generation Sink 0 200 ms Automatic Black Video generation prevents display noise until valid vider data is received from the Source (see Notes: 2 and 3 below) 13 LCD,VCCS to HPD LCD,VCCS to HPD belay from initialization Sink 0 200 ms Sink AUX Channel must be operational upon HPD high to link training initialization 14 belay from HPD high to link training initialization Source 0 - ms Allows for Source to read Link capability and initialize 15 Link training duration Source 0 - ms Min Accounts for required BS-Ide pattern. Nax. allows for Source frame synchronization 16 Link idle Source 0 - ms Max value allows for Sink to validate video data by setting the SINK_STATUS bit Io logic 1 (DPCD 00205h, ib (), and Sink will in olonger generate automatic Black Video. 17 Delay from valid video data from Source to backlight on Source 50 - ms Source must assure backlight is no longer illuminated. At the end of 17, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit IO and Sink will automatically display Black Video. 19 Delay from end of valid video data for walid vide odata Source	t1		-				-
I3 Delay from LCD,VCCS to HPD high Sink 0 200 ms Sink AUX Channel must be operational upon HPD high (see Note: 4 below) 14 belay from HPD high to link training initialization Source 0 - ms Allows for Source to read Link capability and initialization 15 Link training duration Source 0 - ms Max store and the low (ms) 16 Link idle Source 0 - ms Min Accounts for required BS-Idle pattern. Max allows for Source for valid video data and timing. At the end of 17 17 Delay from valid video data from Source to video on display Sink 0 50 ms Sink will indicate the detection of valid video data by setting the SINK STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video Source must assure acklight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image. 19 Delay from end of valid video data from Source to power off Source 50 - ms Source (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image. 10 Delay from end of valid video data from Source to power off <	t2	Delay from LCD,VCCS to black	Sink	0	200	ms	prevents display noise until valid video data is received from the Source (see
14 to link training initialization Source 0 - ms Capability and initialize 15 Link training duration Source 0 - ms Dependant on Source link training protocol 16 Link idle Source 0 - ms Dependant on Source link training protocol 17 Delay from valid video data from Source to video on display Sink 0 50 ms Sink value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of odata from Source to backlight on 18 Delay from valid video data from Source to backlight on Source 80 - ms stable ** Recommended by INX. To avoid garbage image. Source must assure display video is stable stable * Recommended by INX. To avoid garbage image. 19 Delay from backlight off to end of valid video data Source 50 - ms Source must assure backlight on unmated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK STATUS bit to logic 0 (DPCD Ovalid video data by setting the SINK STATUS bit to logic 0 (DPCD Ovalid video data by setting the SINK STATUS bit to logic 0 (DPCD Ovalid video data by setting the SINK video will will will will will will will wil	t3	LCD, VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see
15 Link training duration Source 0 - Ins protocol 16 Link idle Source 0 - ms Min Accounts for required BS-Idle 17 Delay from valid video data from Source to video on display Sink 0 50 ms Max value allows for Sink to validate 18 Delay from valid video data from Source to backlight on Sink 0 50 ms Source state by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatice Black Video 19 Delay from valid video data from Source to backlight on Source 80 - ms Source must assure display video is stable 19 Delay from backlight video data Source 50 - ms Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the stable 10 Delay from backlight video data Source 50 - ms Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image. 110 Delay from end of valid video data from Source to power off Source 0 500 ms Black video will be displayed after receiving	t4	to link training	Source	0	-	ms	
t6 Link idle Source 0 - ms pattern. Max allows for Source frame synchronization 17 Delay from valid video data from Source to video on display Sink 0 50 ms Max value allows for Sink to validate video data and timing. At the end of T7. Sink will indicate the detection of valid video data from Source to backlight on 18 Delay from valid video data from Source to backlight on Source 80 - ms Surce must assure display video is stable 19 Delay from backlight off to end of valid video data Source 50 - ms Source must assure display video is stable 19 Delay from backlight off to end of valid video data Source 50 - ms Source must assure backlight is no longer illuminated. At the end of T9, Sink will automatically display Black Video. (See Notes: 2 and 3 below) 19 Delay from end of valid video data from Source to power off Source 0 500 ms Sink vill indicate the detection of no valid video data from Source to power off 10 Delay from end of valid video data from Source to power off Source 0 500 ms Black video will be displayed after receiving idle or off signals from Source 110 Valid video data from Source Source<	t5	Link training duration	Source	0	-	ms	
17 Delay from valid video data from Source to video on display Sink 0 50 ms video data and timing. At the end of T7, Sink will indicate the detection of OU205h, bit 0), and Sink will no longer generate automatic Black Video data from Source to backlight on 18 Delay from valid video data from Source to backlight on Source 80 - ms Source must assure display video is stable 19 Delay from backlight off to end of valid video data Source 50 - ms Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data 19 Delay from backlight off to end of valid video data Source 50 - ms Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data 10 Delay from end of valid video data from Source to power off Source 0 500 ms Sink villo subres Video. (See Notes: 2 and 3 below) 110 Delay from end of valid video data from Source to power off Source 0.5 10 ms - 111 tree, 90% to 10% Source 0.5 10 ms - - 12 VCCS Power rail fall time, 90% to 10% Source 0.5	t6	Link idle	Source	0	-	ms	pattern. Max allows for Source frame synchronization
t8 Delay from Valid Video data from Source to backlight on Source 80 - ms stable *: Recommended by INX. To avoid garbage image. t9 Delay from backlight off to end of valid video data Source 50 - ms Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image. t10 Delay from end of valid video data from Source to power off Source 0 500 ms Black video will be displayed after receiving idle or off signals from Source t11 VCCS power rail fall time, 90% to 10% Source 0.5 10 ms - tA LED power rail rise time, 10% to 90% Source 0.5 10 ms - tB LED power rail fall time, 90% to 10% Source 0 10 ms - tB LED power rail fall time, 90% to 10% Source 1 - ms - tDelay from LED signal Delay from LED dimming signal to LED Source 1 - ms -	t7	data from Source to	Sink	0	50	ms	video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer
19Delay from backlight off to end of valid video dataSource50-Ionger illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image.10Delay from end of valid video data from Source to power offSource0500msBlack video will be displayed after receiving idle or off signals from Source111VCCS power rail fall time, 90% to 10%Source0.510ms-12VCCS Power off time time, 10% to 90%Source0.510ms-14LED power rail fall time, 90% to 10%Source010ms-18LED power rail fall time, 90% to 10%Source010ms-10Delay from LED power signalSource1-ms-10Delay from LED dimming signal to LEDSource1-ms-	t8	data from Source to	Source	80	-	ms	Source must assure display video is stable *: Recommended by INX. To avoid garbage image.
t10valid video data from Source to power offSource0500msreceiving idle or off signals from Sourcet11VCCS power rail fall time, 90% to 10%Source0.510ms-t12VCCS Power off timeSource500-ms-tALED power rail rise time, 10% to 90%Source0.510ms-tBLED power rail fall time, 90% to 10%Source010ms-tBLED power rail fall time, 90% to 10%Source010ms-tCDelay from LED power signalSource1-ms-tDDelay from LED dimming signal to LEDSource1-ms-	t9	off to end of valid video data	Source	50	-	ms	longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image.
t11time, 90% to 10%Source0.510ms-t12VCCS Power off timeSource500-ms-tALED power rail rise time, 10% to 90%Source0.510ms-tBLED power rail fall time, 90% to 10%Source010ms-tBLED power rail fall time, 90% to 10%Source010ms-tCDelay from LED power rising to LED dimming signalSource1-ms-tDDelay from LED dimming signal to LEDSource1-ms-	t10	valid video data from	Source	0	500	ms	receiving idle or off signals from
t12VCCS Power off timeSource500-ms-tALED power rail rise time, 10% to 90%Source0.510ms-tBLED power rail fall time, 90% to 10%Source010ms-tCDelay from LED power rising to LED dimming signalSource1-ms-tDDelay from LED dimming signal to LEDSource1-ms-	t11		Source	0.5	10	ms	-
tAtime, 10% to 90%Source0.510ms-tBLED power rail fall time, 90% to 10%Source010ms-tCDelay from LED power rising to LED dimming signalSource1-ms-tDDelay from LED dimming signal to LEDSource1-ms-	t12	VCCS Power off time	Source	500	-	ms	-
LB time, 90% to 10% Source 0 10 ms - Delay from LED power rising to LED dimming signal Source 1 - ms - Delay from LED dimming signal to LED Source 1 - ms -	tA	time, 10% to 90%	Source	0.5	10	ms	-
tC rising to LED dimming signal Source 1 - ms - signal Delay from LED Junce 1 - ms - tD dimming signal to LED Source 1 - ms -	tB		Source	0	10	ms	-
tD dimming signal to LED Source 1 - ms -	tC	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
	tD		Source	1	-	ms	-

Version 2.4

18 / 30

tE	Delay from LED dimming signal to LED enable signal	Source	0	-	ms	-
tF	Delay from LED enable signal to LED dimming signal	Source	0	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:

- Upon LCDVCC power-on (within T2 max)

- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)

- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value Unit	
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	According to typical value in "ELECTRICAL CHARACTERISTICS"		
Input Signal			
LED Light Bar Input Current Per Input Pin			

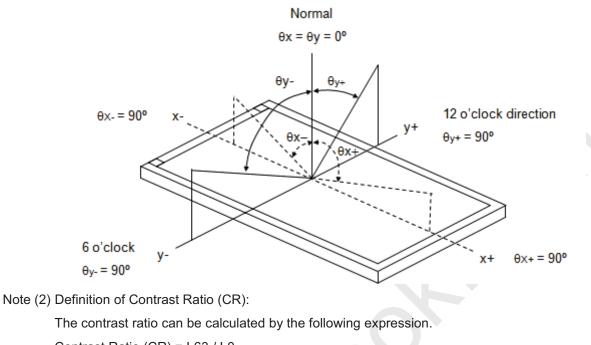
5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Pad	Rx			0.648			
Color Chromaticity (CIE 1931) Blue White	Red	Ry	θ _x =0°, θ _Y =0° CS-2000 R=G=B=255 Gray scale	Typ – 0.03	0.338	Typ + 0.03	-	(1), (5)
	Green	Gx			0.313			
		Gy			0.600			
	Plue	Blue			0.153			
	Diue	By			0.050			
	\//bito	Wx			0.305			
	vvnite	Wy			0.340			
Color g	amut	C.G		68	72	-	%	(7)
Center Lumina	nce of White	Lc		360	450	-	cd/m ²	(4), (5)
Contrast	t Ratio	CR		700	1000	-	-	(2), (5)
Respons	e Time	T_R 0 -0° 0 -0°	θ _x =0°, θ _Y =0°	-	14	19	ms	(3)
Кезропз	e Time	T _F	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$ - 11	16	1115	(3)		
White Va	riation	W	θ _x =0°, θ _Y =0°	70	-	-	%	(5), (6)
Viewing Angle	Horizontal	θ _x +	CR ≧ 10	80	89	-	Deg.	(1), (5)
	θ	θ_x -		80	89	-		
	Vertical θ_{Y}^+		80	89	-	Deg.	(1), (3)	
	vertical	θ γ-		80	89	-		

Version 2.4

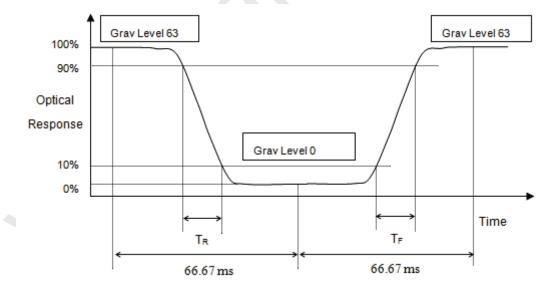
19 July 2023



群創光電

PRODUCT SPECIFICATION

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):


Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Average Luminance of White (LAVE):

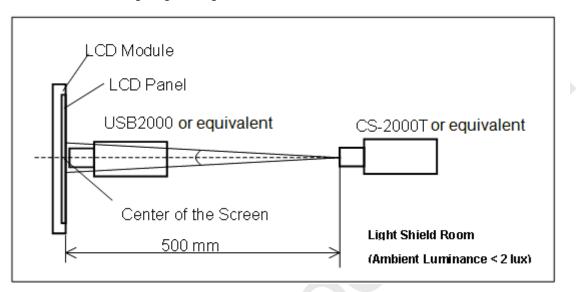
Measure the luminance of gray level 63 at 5 points

 $L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

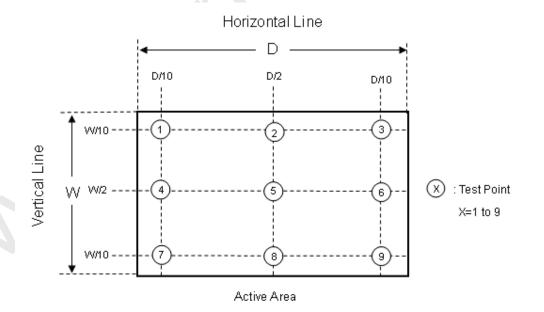
Version 2.4

19 July 2023


群創光電

PRODUCT SPECIFICATION

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.

Note (6)Definition of White Variation (δW):

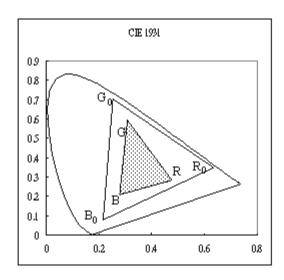
Measure the luminance of gray level 63 at 9 points

 δW = (Minimum [L (1) ~ L (9)] / Maximum [L (1) ~ L (9)]) *100%

Ve	rsion	2.4

19 July 2023

RGB: area of triangle


Note (7) Definition of color gamut (C.G%):

 $C.G\% = RGB / R_0 G_0 B_0,*100\%$

 R_0 , G_0 , B_0 : color coordinates of red, green, and blue defined by NTSC, respectively.

R, G, B: color coordinates of module on 63 gray levels of red, green, and blue, respectively.

 $R_0 G_0 B_0$: area of triangle defined by R_0 , G_0 , B_0

defined by R, G, B

Version 2.4

19 July 2023

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	70°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour←70°C, 0.5hour; 1hour/cycle,100cycles	(1)(2) (4)(5)
High Temperature Operation Test	60°C, 240 hours	
Low Temperature Operation Test	0°C, 240 hours	
High Temperature & High Humidity Operation Test	50°C, 80%RH, 240hours	(1)(2) (4)(6)
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.	(2)(3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(2)(3)

Note (1) There should be no condensation on the surface of panel during test.

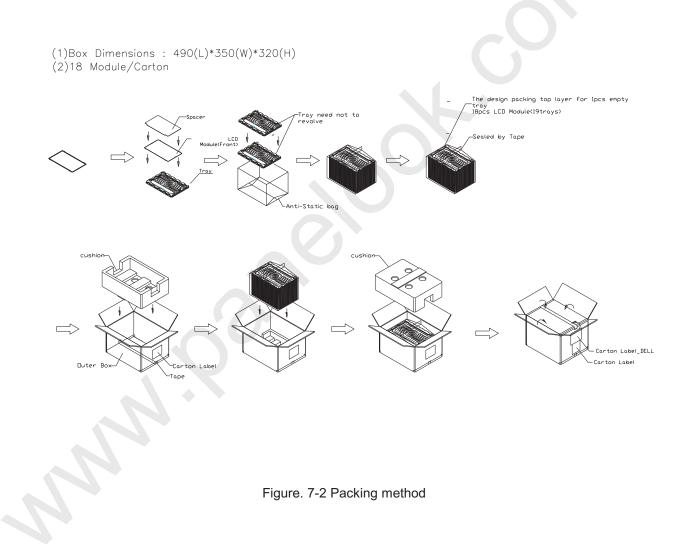
Note (2) Temperature of panel display surface area should be 98 °C Max.

- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Version 2.4

19 July 2023

群創光電


PRODUCT SPECIFICATION

7.1 PACKING SPECIFICATIONS

- (1) 18 pcs LCD modules / 1 Box
- (2) Box dimensions: 490 (L) X 350 (W) X 320 (H) mm
- (3) Weight: approximately 16.3Kg (18 modules per box)

7.2 PACKING METHOD

19 July 2023

群創光電

PRODUCT SPECIFICATION

7.3 PALLET

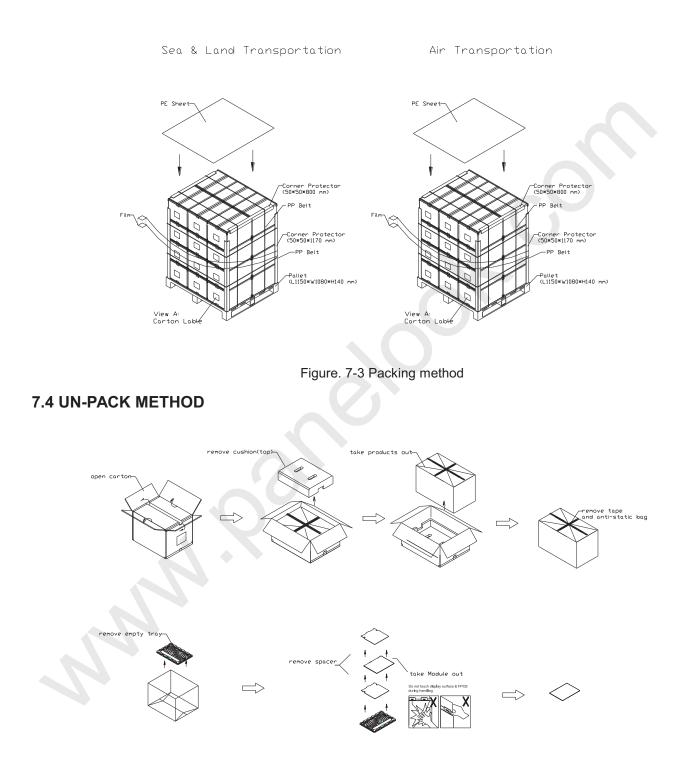
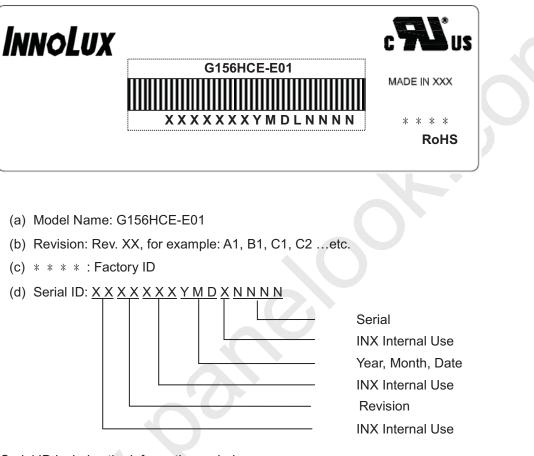


Figure. 7-4 Un-Packing method

19 July 2023



8. MODULE LABEL

8.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

Version 2.4

19 July 2023

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

9.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° C to 35° C and relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

9.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below :

Temperature : $20\pm15^{\circ}C$

Humidity: 65±20%

Display pattern : continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude , display pattern or operation time etc...It is strongly recommended to contact CMI for application engineering advice . Otherwise , Its reliability and function may not be guaranteed.

9.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

Version 2.4

19 July 2023

28 / 30

www.panelook.com

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

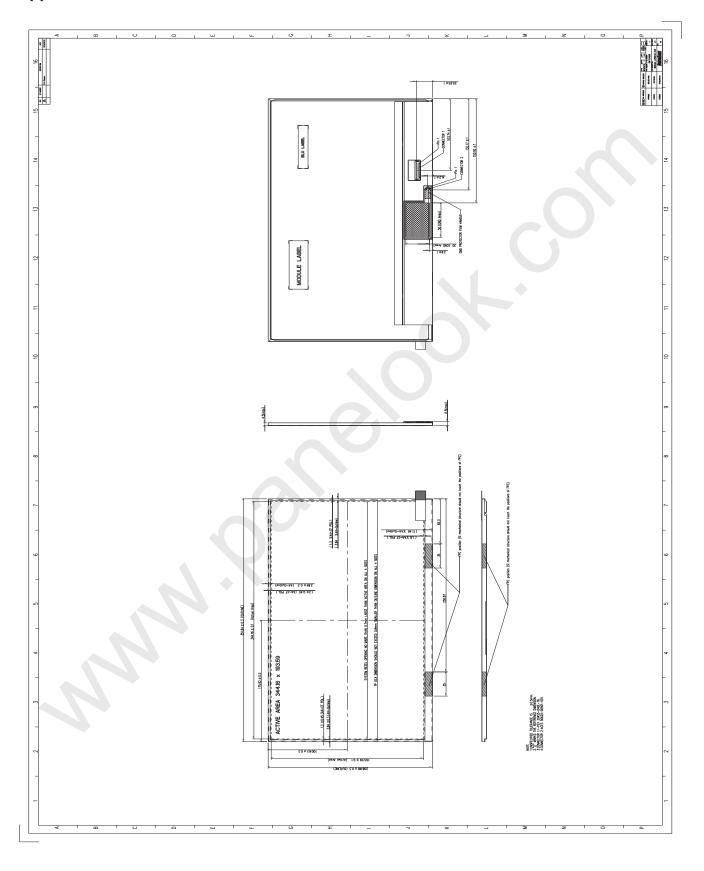
- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

9.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur

Version 2.4

19 July 2023



群創光電

PRODUCT SPECIFICATION

Appendix. OUTLINE DRAWING

Version 2.4

19 July 2023

30 / 30