

Product Specification

SPECIFICATION FOR APPROVAL

(()	Preliminary Specification
1	ſ	•	٦	Final Specification

TITLE	27.0" QHD TFT LCD

BUYER	DELL
MODEL	

SUPPLIER	LG Display Co., Ltd.
MODEL	LM270WQA
SUFFIX	SSA2

^{*}When you obtain standard approval, please use the above model name without suffix

APPROVED BY	SIGNATURE DATE
,	
Please return 1 copy for your with your signature and comm	confirmation nents.

Ver. 1.0

1 / 35

May. 13, 2020

②

Product Specification

Contents

No.	Item	Page
	Cover	1
	Contents	2
	Record of Revisions	3
1	General Description	4
2	Absolute Maximum Ratings	5
3	Electrical Specifications	6
3-1	Electrical Characteristics	6
3-2	Interface Connections	9
3-3	Signal Timing Specifications	16
3-4	Signal Timing Waveforms	17
3-5	Color Data Reference	18
3-6	Power Sequence	19
3-7	Power Dip Condition	20
4	Optical Specifications	21
5	Mechanical Characteristics	26
6	Reliability	29
7	International Standards	30
7-1	Safety	30
7-2	Environment	30
8	Packing	31
8-1	Designation of Lot Mark	31
8-2	Packing Form	32
9	Precautions	33
9-1	Mounting Precautions	33
9-2	Operating Precautions	33
9-3	Electrostatic Discharge Control	34
9-4	Precautions For Strong Light Exposure	34
9-5	Storage	34
9-6	Handling Precautions For Protection Film	34

Ver. 1.0 May. 13, 2020 2 / 35

Product Specification

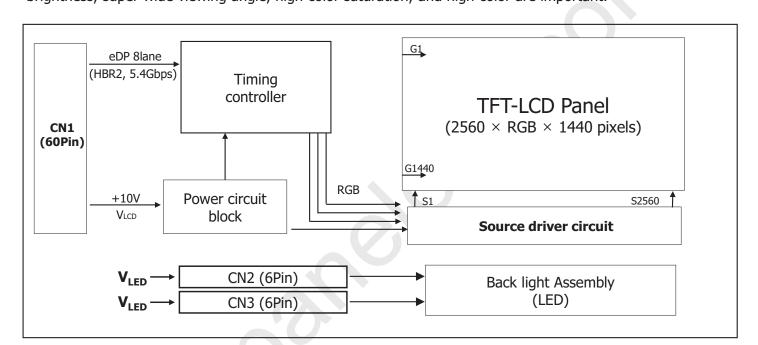
Record of Revisions

			Record of Rev	1010110										
Revision No	Revision Date	Page	Before	After	Application Date									
0.1	Aug. 05, 2019	-	- First Draft(Preliminary)											
0.2	Aug. 05, 2019	23	Change the format and page about characteristics of peak luminance Table 3-3. Absolute maximum value of LED bar Parameter Symbol Values Unit Notes Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 2 Peak LED string current is (110) mA 1, 3, 3, 2 Peak LED string current is (110) mA 1, 3, 3, 2 Peak LED string current is (110) mA 1, 3, 3, 2 Peak LED string current is (110) mA 1, 3, 3, 2 Peak LED string current is (110) mA 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,											
		1, 5	Update the model name LM270WQA-SSxx	LM270WQA-SSA2										
0.3	Aug. 19, 2019	- '	2019 177 2019		Percent	Aug. 19, 2019								
			Jpdate the note (C) about characteristics of peak luminance c) Peak luminance 500nt is achieved at (110mA), while the specifications for guarantee remains under the production shall be applied with condition specified in Table 3-2. Specifications and condition for evaluation test and mass production shall be applied with conditions specified in Table 3-2. Specifications and condition for evaluation test and mass production shall be applied with conditions specified in Table 3-2.											
0.4	Aug. 30,	-	Update the timing table and notes	PubMis Do D. Televine Evides September Sect Sect	Aug. 30,									
	2019	2019	2019	2013	2023	2013	2013	2013	2019	2019	33	Update the information of Packing form		2019
0.5	Sep. 09, 2019	17	Update the timing table											
			Update the LED bar electrical character	istics										
0.6	Apr. 29, 2020	Y	Parameter Symbol Win. Typ. Max. Units	Parameter Symbol Walues Units	Apr. 25, 2020									

Product Specification

Record of Revisions

Record of Revisions									
Revision No	Revision Date	Page	Before	After	Application Date				
Apr. 29, 36 37			Update the content of appendix about	HDR function	Apr. 29,				
0.6	2020	36,37	To be update	Update the content of appendix	2020				
		-	-	Final Draft					
			Update the mechanical drawing						
1.0	May. 13. 2020	29			May. 13.				
	2020		Update the content of safety		2020				
		31	7-1. Safety a) IU. 60959-1, Underwriters Laboratories Inc. Information Technology Equipment - Safety - Part 1: General Requirements. b) CANCSA C2.2 No.00959-1-07, Canadian Standards Association. Information Technology Equipment - Safety - Part 1: General Requirements. c) EN 00950-1, European Committee for Electro-technol Standardization(CENELEC). Information Technology Equipment - Safety - Part 1: General Requirements. d) EC 00950-1, The International Electro-technol. Commission(EC). Information Technology Equipment - Safety - Part 1: General Requirements.	7-1. Safety a) [Ec 62364-1, The International Electro-technical Commission(EC), Audio/Judeo, Information and Communication Technology Equipment - Safety - Safety Requirement b) El 62366-1, European Committee for Electro-technical Standardizzation (CERLEC) Audio/Judeo, Information and Communication Technology Equipment - Safety Requirements c) (UK 62366-1, UK LUC: Audio/Judeo, Information and Communication Technology Equipment - Safety Requirements d) CAW CSA C222 No.62366-1, Canadian Standards Association (CSA). Audio/Judeo, Information and Communication Technology Equipment - Safety Requirements b) (Information Technology Equipment - Safety Requirements) Information Technology Equipment - Safety - Part 1: General Requirements	K				
			. (



Product Specification

1. General description

Global LCD Panel Exchange Center

LM270WQA-SSA2 is a color active matrix liquid crystal display with a light emitting diode (WLED) backlight assembly without LED driver. The matrix employs a-Si thin film transistor as the active element. It is a transmissive type display operating in the normally black mode. It has a 27 inch diagonally measured active display area with QHD resolution.(2560 horizontal by 1440 vertical pixels array) Each pixel is divided into red, green and blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10bit gray scale signal for each dot, thus, presenting a palette of more than 1.07 Billion colors with A-FRC(Advanced Frame Rate Control). It has been designed to apply eDP(HBR2, 5.4Gbps) interface. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.

[FIG. 1] Block diagram

General features

<u> </u>	
Active screen size	27 inches(68.47cm) (Aspect ratio 16:9)
Outline dimension	608.8(H) x 355.1(V) x 15.2mm (Typ.)
Pixel pitch	0.2331(H)mm x 0.2331(V)mm
Pixel format	2560(H) x 1440(V) Pixels. RGB stripes arrangement
Color depth	1.07 Billion colors (8bit + A-FRC)
Luminance (@White)	400 cd/m² (Center 1 Point, Typ.)
Viewing angle(CR>10)	View angle free (R/L 178(Typ.), U/D 178(Typ.))
Power consumption	Total 36.9Watt (5.6Watt @V _{LCD} , 31.3Watt @Is=85mA)
Weight	2,550g (Typ.)
Display operating mode	Transmissive mode, normally black
Panel type	Reverse type
Surface treatment	Anti-Glare treatment of the front polarizer (Haze25%, 3H)

Ver. 1.0 May. 13, 2020 5 / 35

LM270WQA **Liquid Crystal Display**

Product Specification

2. Absolute Maximum Ratings

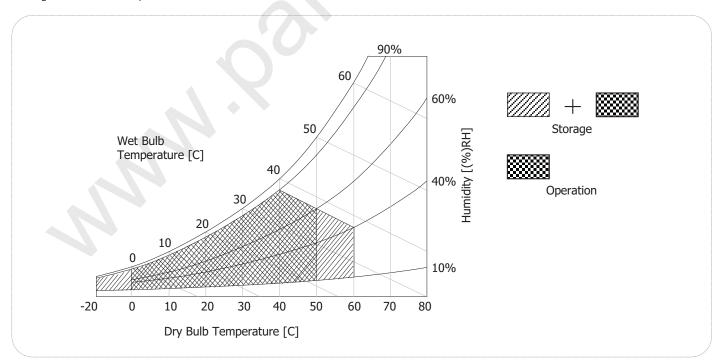

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 2-1. Absolute Maximum Ratings

Dawasakau	C. mahal	Val	ues	l luite	Notes	
Parameter	Symbol	Min	Max	Units		
Power Supply Input Voltage	V _{LCD}	-0.3	+11.0	V _{DC}	At 25℃	
Operating Temperature	T _{OP}	0	50	C		
Storage Temperature	T _{ST}	-20	60	C	1 2 2	
Operating Ambient Humidity	H _{OP}	10	90	%RH	1,2,3	
Storage Humidity	H _{ST}	10	90	%RH		
LCM Surface Temperature(Operation)	T _{surface}	0	65	$^{\circ}$	1,4	

Notes:

- 1) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C Max, and no condensation of water.
- 2) Maximum storage humidity is up to 40°C, 70% RH only for 4 corner light leakage mura.
- 3) Storage condition is guaranteed under packing condition.
 4) LCM surface temperature should be measured under the condition of V_{LCD} = Typ, f_V = 144Hz, T_a = 25°C, no humidity and typical LED string current.
- * f_V = Frame frequency
- * T_a = Ambient temperature

FIG.2 Temperature And Relative Humidity

Product Specification

3. Electrical Specifications

3-1. Electrical Characteristics

It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.

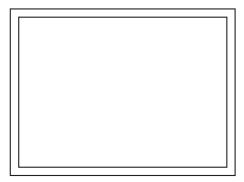
Table 3-1. Electrical Characteristics

Parameter	Cymbol		Values	Unit	Notos	
Parameter	Symbol	Min	Тур	Max	Ullit	Notes
Module:						
Power Supply Input voltage	V _{LCD}	9.5	10.0	10.5	Vdc	4
Permissive Power Input Ripple	VRIPPLE	-	-	400	mVp-p	1
Dower Cumply Input Current	ILCD Typ.	-	560	840	mA	
Power Supply Input Current	ILCD Max.	-	580	870	mA	2
Dower Consumption	PLCD Typ.	-	5.6	8.4	Watt	2
Power Consumption	PLCD Max.	-	5.8	8.7	Watt	
Rush Current	Irush	()-	-	4.0	Α	3

Notes:

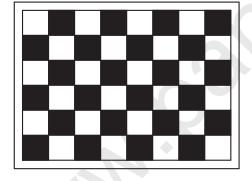
- 1) Permissive power ripple should be measured under the condition of V_{LCD} = Typ, $25\pm2\,^{\circ}$ C, f_{V} = Max. Refer to page 7 for the pattern and more information.
- 2) The specified current and power consumption can be measured under the $V_{LCD} = \text{Typ}$, $25 \pm 2\,^{\circ}\text{C}$, $f_V = 144\text{Hz}$ and the pattern should be changed according to the typical or maximum power condition. The max. current can be measured only with the maximum power pattern. See the page 7 for details.
- 3) Maximum condition of inrush current:
 - The duration of rush current is about 5ms and rising time of power input is 500us $\pm 20\%$.(Min).
- 4) V_{LCD} level must be measured between two points on PCB of LCM V_{LCD} (test point) ~ LCM Ground. (Test condition: Maximum power pattern, 25 °C, $f_V = 144$ Hz)

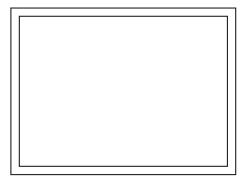
^{*} f_V = Frame frequency



LM270WQA **Liquid Crystal Display**

Product Specification


• Permissive Power Input Ripple(V_{LCD} = Typ, 25 °C, f_V(frame frequency) = Max condition)


White Pattern

For the exact ripple measurement, the condition of Max 20MHz is recommended in the bandwidth configuration of oscilloscope.

• **Power Consumption**($V_{LCD} = Typ, 25^{\circ}C, f_{V}(frame frequency) = 144Hz condition)$

Typical Power Pattern

Maximum Power Pattern

FIG.3-1 Mosaic Pattern & White Pattern For Power Consumption Measurement

Product Specification

Table 3-2. LED Bar Electrical Characteristics

Davamatav	Cumbal		Unito	Notes		
Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
LED string current	Is	-	85	90	mA	1, 2
LED string voltage	Vs	44.4	46.0	47.6	V	1, 3
Power consumption	PBar	-	31.3	32.4	Watt	1, 2, 5
LED life time	LED_LT	30,000	-	- (Hour	4

Notes : The LED bar consists of 64 LED packages, 8 strings (parallel) x 8 packages (serial) x 1 bar

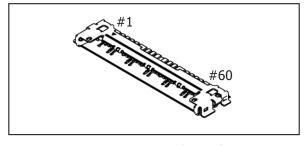
- 1. The specified values are for single LED bar.
- 2. The specified current is defined as the input current for single LED string with 100% duty cycle.
- 3. The specified voltage is the input LED string voltage at typical current 100% duty cycle.
- 4. The LED life time is defined as the time when brightness of LED itself reach to the 50% of initial value under the conditions at $Ta = 25 \pm 2^{\circ}C$ and typical LED string current.
- 5. The power consumption shown above does not include the loss of external LED driver. The typical power consumption is calculated as $P_{Bar} = Vs(Typ.) \times Is(Typ.) \times No.$ of strings. The maximum power consumption is calculated as $P_{Bar} = Vs(Max.) \times Is(Typ.) \times No.$ of strings.

Ver. 1.0 May. 13, 2020 9 / 35

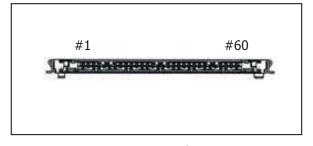
Product Specification

3-2. Interface Connections

3-2-1. LCD Module


- LCD Connector(Receptacle): 20525-060E-01(Manufactured by I-PEX)
- Mating Connector(Plug): 20523-060T(Manufactured by I-PEX)

<u>Table 3-3. Module Connector(CN1) Pin Configuration</u>

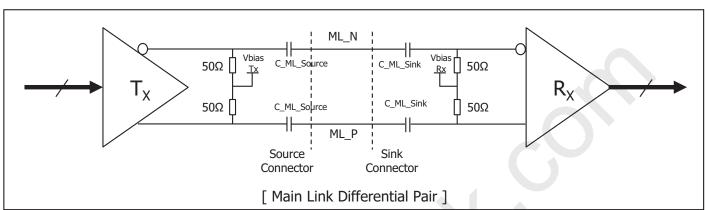

No	Symbol	Description	No	Symbol	Description
1	GND	Ground	31	DP0_L1_N	Master Component Signal for Main Link 1
2	V_{LCD}	Power Supply +10.0V	32	GND	Ground
3	V_{LCD}	Power Supply +10.0V	33	DP0_L2_P	Master True Signal for Main Link 2
4	V_{LCD}	Power Supply +10.0V	34	DP0_L2_N	Master Component Signal for Main Link 2
5	V_{LCD}	Power Supply +10.0V	35	GND	Ground
6	V_{LCD}	Power Supply +10.0V	36	DP0_L3_P	Master True Signal for Main Link 3
7	V_{LCD}	Power Supply +10.0V	37	DP0_L3_N	Master Component Signal for Main Link 3
8	V_{LCD}	Power Supply +10.0V	38	GND	Ground
9	V_{LCD}	Power Supply +10.0V	39	DP1_L0_P	Slave True Signal for Main Link 0
10	GND	Ground	40	DP1_L0_N	Slave Component Signal for Main Link 0
11	GND	Ground	41	GND	Ground
12	GND	Ground	42	DP1_L1_P	Slave True Signal for Main Link 1
13	GND	Ground	43	DP1_L1_N	Slave Component Signal for Main Link 1
14	GND	Ground	44	GND	Ground
15	GND	Ground	45	DP1_L2_P	Slave True Signal for Main Link 2
16	GND	Ground	46	DP1_L2_N	Slave Component Signal for Main Link 2
17	BIST	L(GND): Black, H(3.3V): Rotational Pattern	47	GND	Ground
18	GND	Ground	48	DP1_L3_P	Slave True Signal for Main Link 3
19	NC	No Connection(I2C serial interface for LCM)	49	DP1_L3_N	Slave Component Signal for Main Link 3
20	NC	No Connection(I2C serial interface for LCM)	50	GND	Ground
21	DP0_HPD	Master Hot Plug Detect Signal	51	DP1_AUX_P	Slave True Signal for Auxiliary Channel
22	DP1_HPD	Slave Hot Plug Detect Signal	52	DP1_AUX_N	Slave Component Signal for Auxiliary Channel
23	GND	Ground	53	GND	Ground
24	DP0_AUX_P	Master True Signal for Auxiliary Channel	54	NC	No Connection(I2C serial interface for LCM)
25	DP0_AUX_N	Master Component Signal for Auxiliary Channel	55	NC	No Connection(I2C serial interface for LCM)
26	GND	Ground	56	NC	No Connection
27	DP0_L0_P	Master True Signal for Main Link 0	57	GND	Ground
28	DP0_L0_N	Master Component Signal for Main Link 0	58	NC	No Connection
29	GND	Ground	59	GND	Ground
30	DP0_L1_P	Master True Signal for Main Link 1	60	NC	No Connection

Notes:

- 1) All GND(ground) pins should be connected together to the LCD module's metal frame.
- 2) All V_{LCD}(power input) pins should be connected together.
 3) BIST(Build In Self Test): If BIST pin is tied to "High(3.3V)", T-con generates rotational pattern. Time to stay at every pattern is about 2sec.

Rear view of LCM

Ver. 1.0 May. 13, 2020 10 / 35


🕦 LG Display

Product Specification

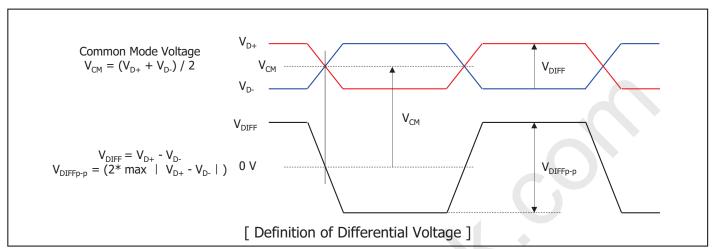
3-2-2. eDP Signal Specifications

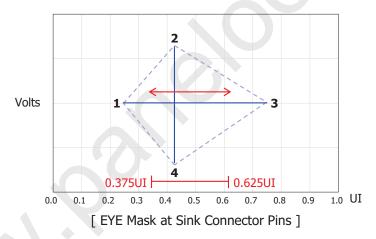
1. eDP Main Link Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Unit Interval for High Bit Rate (5.4Gbps / Lane)	UI_HBR2	-	185		ps	
Link Clark Down Carandina	Amplitude	0	1	0.5	%	
Link Clock Down Spreading	Frequency	30		33	kHz	
Maximum Output Voltage Level at Source Side Connector	V _{TX-DIFFp-p-Max}		-	1.38	V	6
Differential Peak to peak Voltage at Sink Side Connector	V _{RX-DIFFp-p}	0.09	-	-	V	7
EYE width at Sink Side Connector	T _{RX-EYE-CONN}	0.38	-	-	UI	6,7
Lane Intra-pair Skew	L _{Rx-SKEW-} INTRA_PAIR	-	-	50	ps	
Master Tx to Slave Tx Skew	Tx-to- Tx_skew	-	-	± 0.25	DE	8
AC Coupling Capacitor	C _{SOURCE} ML	75	-	200	nF	Source side

Notes:

- 1) In cabled embedded system, it is recommended the system designer ensure that EYE width and voltage are met at the sink side connector pins.
- 2) Mismatched common mode voltage will occur abnormal display.
- 3) All eDP electrical spec is measured at sink connector side.




Product Specification

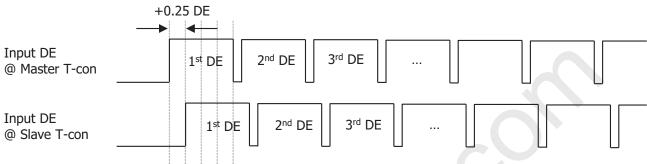
Note 6) Definition of Differential Voltage

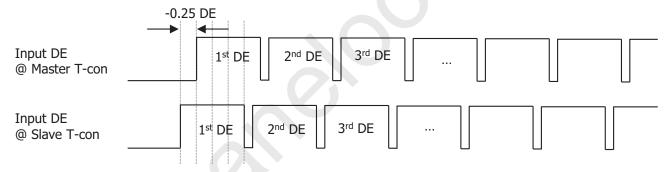
Global LCD Panel Exchange Center

Note 7) Main Link EYE Diagram

Point	High Bit Rate 2 @ TP3 EQ	
FOILE	Time(UI)	Voltage(V)
1	Any UI location (x) where the eye width is open from x to $x + 0.38UI$	0.000
2	Any passing UI location between 0.375UI - 0.625UI	0.045
3	Point 1 + 0.38UI	0.000
4	Same as Point 2	-0.045

[EYE Mask Vertices at embedded DP Sink Connector Pins]



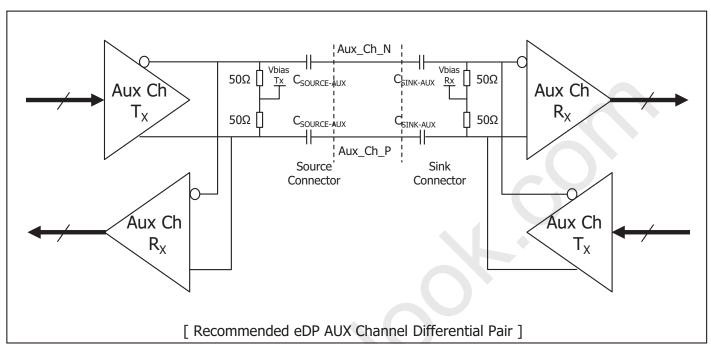

Product Specification

Note 8) Master Tx to Slave Tx Skew Margin Case

(1) +0.25 DE Skew Case

(2) -0.25 DE Skew Case

Ver. 1.0 May. 13, 2020 13 / 35



Product Specification

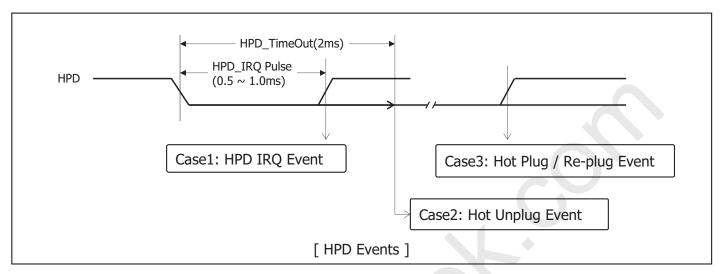
2. eDP AUX Channel Signal

Global LCD Panel Exchange Center

Parameter	Symbol	Min	Тур	Max	Unit	Notes
AUX Unit Interval	UI	0.4	-	0.6	us	
AUX Jitter at Rx IC Package Pins	T _{jitter}	-	-	0.05	UI	Equal to 30ns
AUX Peak-to-peak Voltage at Connector Pins of Receiving	(0)	0.32	-	1.36	V	
AUX Peak-to-peak Voltage at Connector Pins of Transmitting	V _{AUX-DIFFp-p}	0.39	-	1.38	V	
AUX EYE width at Connector Pins of Tx and Rx		0.98	-	-	UI	
AUX AC Coupling Capacitor	C _{SOURCE-AUX}	75	-	200	nF	Source side

Notes:

V_{AUX-DIFFp-p} = 2 * | V_{AUXP} - V_{AUXN} |
 Termination resistor should be 50ohm ± 5% at source side to AUX level.
 Mismatched common mode voltage will occur abnormal display.



LM270WQA **Liquid Crystal Display**

Product Specification

3. eDP HDP Signal

Parameter	Symbol	Min	Тур	Max	Unit	Notes
HPD Voltage		2.25	-	3.6	V	Sink side Driving
Hot Plug Detection Threshold	HPD	2.0		-	V	Course side Datastina
Hot Unplug Detection Threshold		-	-	0.8	V	Source side Detecting
HPD_IRQ Pulse Width	HPD_IRQ	0.5	-	1.0	ms	
HPD_TimeOut		2.0	-	_	ms	HPD Unplug Event

Notes:

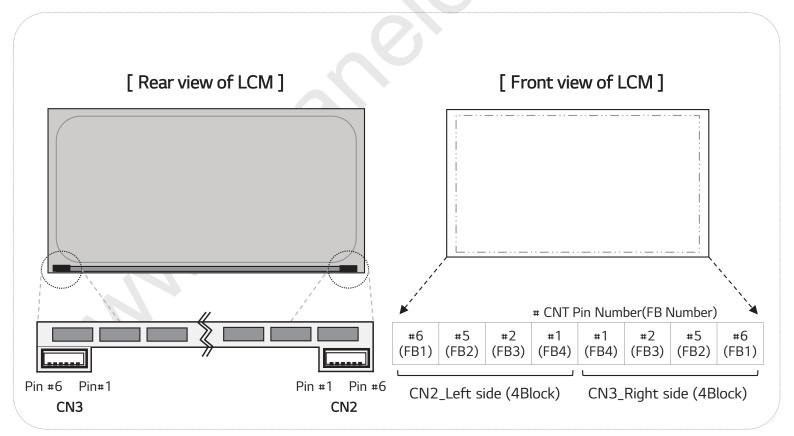
- 1) HPD IRQ: Sink device wants to notify the Source device that Sink's status has changed so it toggles HPD line, forcing the Source device to read its Link / Sink Receiver DPCD field via the AUX-CH.
- 2) HPD Unplug: The Sink device is no longer attached to the Source device and the Source device may then disable its Main Link as a power saving mode.
- 3) Plug / Re-plug: The Sink device is now attached to the Source device, forcing the Source device to read its Receiver capabilities and Link / Sink status Receiver DPCD fields via the AUX-CH.

LM270WQA Liquid Crystal Display

Product Specification

3-2-3. Backlight Connector Pin Configuration

The LED interface connector is 10035WS-H06D(HF)_wire-locking type manufactured by YEONHO.


The mating connector is a SHJP-06V-S(HF) or 10035HS-H06C(HF).

The pin configuration for the connector is shown in the table below.

Table 3-4. Backlight connector pin configuration(CN2, CN3)

Pin	Symbol	Pin-description (CN2)	Remark
#1	FB4	Channel 4 current feedback	
#2	FB3	Channel 3 current feedback	
#3	V LED	LED power supply (common anode)	Left side
#4	V LED	LED power supply (common anode)	
#5	FB2	Channel 2 current feedback	
#6	FB1	Channel 1 current feedback	

Pin	Symbol	Pin-description (CN3)	Remark
#1	FB4	Channel 4 current feedback	
#2	FB3	Channel 3 current feedback	
#3	V LED	LED power supply (common anode)	Right side
#4	V LED	LED power supply (common anode)	
#5	FB2	Channel 2 current feedback	
#6	FB1	Channel 1 current feedback	

[FIG. 5] Backlight connector view

Ver. 1.0 May. 13, 2020 16 / 35

Product Specification

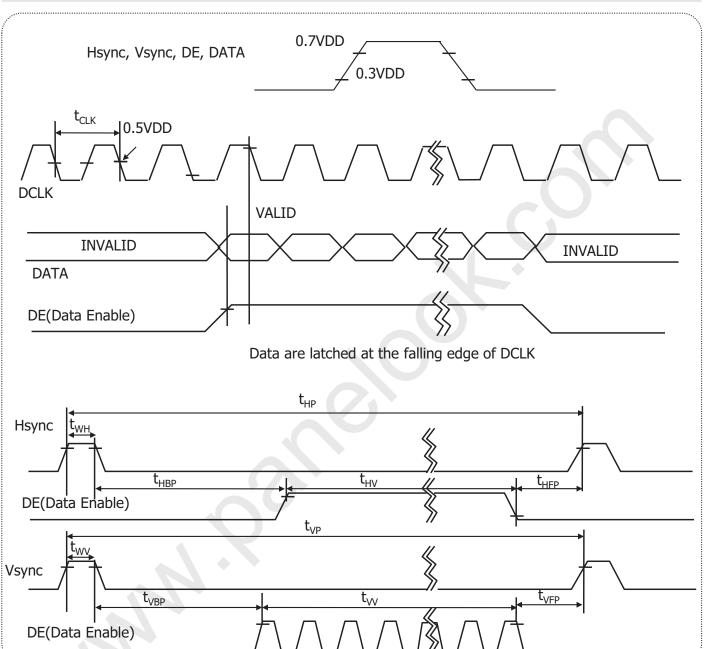
3-3. Signal Timing Specifications

This is the signal timing requirement from the signal transmitter. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Table 3-5. Timing Table

Item	Symbol	Symbol	Min	Тур	Max	Unit	Notes
D 61 14	Period	tCLK	2.86	3.28	5.71	ns	Pixel frequency
DCLK	Frequency	fCLK	175.00	305.14	350.00	MHz	(Typ. 610.28 MHz)
Hsync	Period	tHP	1,396	1,408	1,472	tCLK	
	Horizontal Valid	tHV	1,280	1,280	1,280	tCLK	
	Horizontal Blank	tHB	116	128	192	tCLK	
	Frequency	fH	90.30	216.72	251.00	kHz	1,3,4
	Width	tWH	32	32	32	tCLK	
	Horizontal Back Porch	tHBP	52	64	128	tCLK	
	Horizontal Front Porch	tHFP	32	32	32	tCLK	
	Period	tVP	1,493	1,505	5,284	tHP	
	Vertical Valid	tVV	1,440	1,440	1,440	tHP	
	Vertical Blank	tVB	53	65	3,844	tHP	
Vsync	Frequency	fV	47	144	166	Hz	2,4
	Width	tWV	5	5	5	tHP	
	Vertical Back Porch	tVBP	45	57	3,836	tHP	
	Vertical Front Porch	tVFP	3	3	3	tHP	

Notes:


- 1) The value of Hsync Period, Hsync Width and Hsync valid should be even number times of tCLK. If the value is odd number times of tCLK, it can make asynchronous signal timing and cause abnormal display.
- 2) The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.
- 3) The value of Hsync Period, Hsync Width, and Horizontal Back Porch should be divided by 4 without a remainder.
- 4) The polarity of Hsync, Vsync is not restricted.
- 5) It needs to avoid specific DCLK ranges for optimal display performance. (DCLK Range: 192~197MHz)
 - * This panel supports Gaming Mode(47~166Hz) only under moving picture in room temperature(25±5°C).
 - It would not work usually under still image & reliability test.
 - Under those condition, the phenomenon such as image sticking and flickering could be found on the screen.
 - This panel supports FOS/Reliability quality under fixed frequency (60Hz~165Hz) condition.

Product Specification

3-4. Signal Timing Waveforms

Ver. 1.0 May. 13, 2020 18 / 35

Product Specification

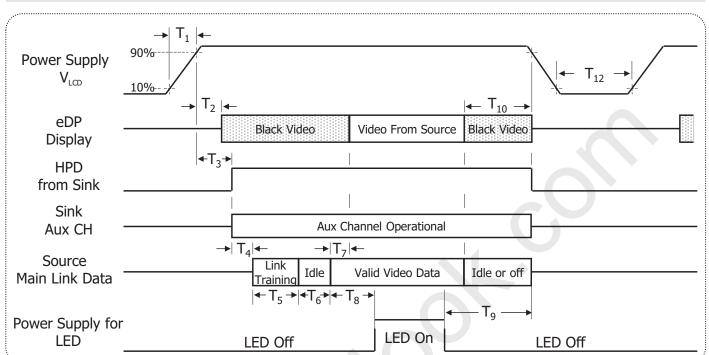
3-5. Color Data Reference

The Brightness of each primary color(Red,Green,Blue) is based on the 10-bit gray scale data input for the color; the higher the binary input, the brighter the color.

The table below provides a reference for color versus data input.

Table 3-6. Color Data Reference

														Inp	out	Сс	olor	Da	ata												
	Color					RE	Đ								(GRE	ΞEN	ı								BL	UE				
	Coloi	MS	SB							LS	SB	MS	SB							LS	В	MS	В							LS	ВВ
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1 (G 0	В9	B8	В7	B6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED	•••																														
	RED (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
GREEN																															
	GREEN (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE (0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																															
	BLUE (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1



Product Specification

3-6. Power Sequence

Global LCD Panel Exchange Center

Table 3-7. Power Sequence

Timeira	Required	Lin	nits	Llusiba	Notes
Timing	Ву	Min	Max	Units	Notes
T ₁	Source	0.5	10	ms	
T ₂	Sink	10	200	ms	
T ₃	Sink	15	200	ms	
T ₄	Source	-	-	ms	5
T ₅	Source	-	-	ms	5
T ₆	Source	-	100	ms	6
T ₈	Source	350	_	ms	
T ₉	Source	200	-	ms	4

Timina	Required	Lin	nits	Linita	Notos
riiiiiig	Ву	Min	Max	UTILS	Notes
T ₁₀	Source	0	500	ms	
T ₁₂	Source	1000	-	ms	
		Timing By T ₁₀ Source	Timing By Min T ₁₀ Source 0	Timing By Min Max T ₁₀ Source 0 500	Timing By Min Max Units T_{10} Source 0 500 ms

Notes:

- 1) Power sequence should be kept all the time including below cases for normal operation.
 - AC/DC Power On/Off
 - Mode change (resolution, frequency, timing, sleep mode, color depth change, etc.) The violation of power sequence can cause a significant trouble in display and reliability.

- 2) Please avoid floating state of interface signal during signal invalid period.
 3) When the interface signal is invalid, be sure to pull down the V_{LCD}.(0V)
 4) Please turn off the power supply for LED when the level of V_{LCD} changes to prevent noise issue.
- 5) Link training duration is dependent on the customer's system.
- 6) It includes Source Frame Synchronization time.
 - Source Frame Synchronization: Time to prepare before Tx(Source) sends valid data(Invalid period).

Product Specification

3-7. Power Dip Condition

Global LCD Panel Exchange Center

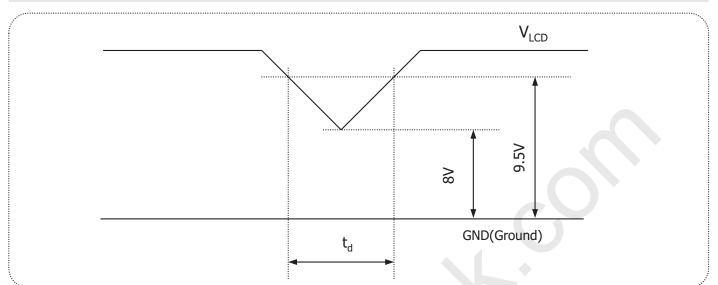


FIG.3-3 Power Dip Condition

For proper operation, stable power supply of V_{LCD} is necessary and power dip is allowed only in below condition. Except this condition, power on/off should follow power sequence specification exactly.

1) Dip Condition
$$8V \le V_{LCD} < 9.5V$$
 , $t_d \le 20ms$

Product Specification

4. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' for approximately 30 minutes in a dark environment at 25±2°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0° and aperture 1 degree. FIG.4-1 presents additional information concerning the measurement equipment and method.

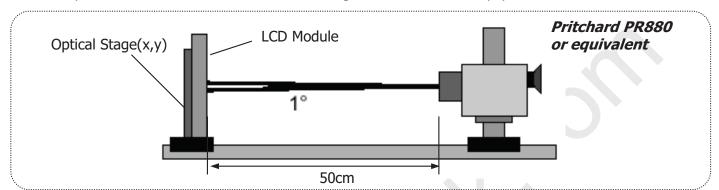


FIG.4-1 Optical Characteristic Measurement Equipment And Method

Table 4-1. Optical Characteristics

Table 4-1. Optica	i Cilaracteristics		$(T_a=2)$	$25 ^{\circ}\mathrm{C}$, $V_{LCD} = ^{\circ}\mathrm{C}$	Typ, f _v =144	Hz, DCLK=Ty	γp, I _s =Typ
Param	octor	Symbol		Values		Units	Notes
Palali	ietei	Symbol	Min.	Тур.	Max.	UTILS	Notes
Contrast Ratio		CR	700	1000	-		1
urface Luminance, white		L _{WH}	320	400	-	cd/m ²	2
Luminance Variation	δ _{WHITE}	75	-	-	%	3	
Response Time Gray to Gray		$T_{\rm GTG_AVR}$	-	5	10	ms	4
Color gamut (CIE19	76)	DCI	-	98	-	%	
Re	Dad	Rx		0.686			
	Rea	Ry		0.309			
	Curan	Gx		0.265			
Color Coordinates [CIE 1931]	Green	Gy	Тур	0.668	Тур		
(By PR650)	Dive	Bx	-0.03	0.150	+0.03		
	Blue	Ву		0.058			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Wx		0.313	_		
	White	Wy		0.329	_		
Color Temperature		-	-	6500	-	K	
Viewing Angle (CR>10, General)	Horizontal	θ_{H}	170	178	-	D	_
	Vertical	θ_{V}	170	178	-	Degree	5
Gray Scale		-	-	2.2	-		6
			1	1	1		

Ver. 1.0 May. 13, 2020 22 / 35

Product Specification

4-1. Characteristics of Peak Luminance

Table 4-1-1. Absolute Maximum Value of LED Bar and Peak Luminance

Parameter	Symbol	Values	Unit	Notes
Peak LED String Current	Is	110	mA	a,b,c
Peak Luminance	Lp	500	nit	a,b,c

Notes:

- a) Peak LED string voltage at peak current with 100% duty cycle is 46.9 \pm 1.6V at T_a = 25 \pm 2°C. b) Table 4-1-1 is reference data only for HDR Function usage, refer to the appendix of LCM temperature at peak current.
- c) Peak luminance 500nit (Min. 400nit) is achieved at 110mA, while the specifications for guarantee remains under the normal operating condition specified in Table 3-2. Specifications and condition for evaluation test and mass production shall be applied with conditions specified in Table 3-2.

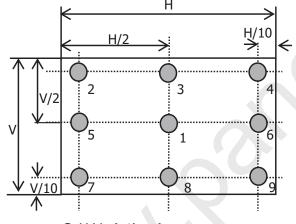
Ver. 1.0 May. 13, 2020 23 / 35

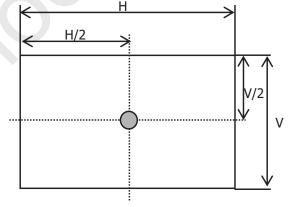
LM270WQA **Liquid Crystal Display**

Product Specification

Notes:

1) Contrast Ratio(CR) is defined mathematically as: (By PR880) It is measured at center point(1)


- 2) Surface Luminance(LwH) is the luminance value at center 1 point(1) across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG.4-1. (By PR880)
- 3) The Variation in Surface Luminance , δ _{WHITE} is defined as: (By PR880)


$$\delta_{\text{WHITE}} = \frac{\text{Minimum(LP1,LP2,, LP9)}}{\text{Maximum(LP1,LP2,, LP9)}} \times 100(\%)$$

Where L1 to L9 are the luminance with all pixels displaying white at 9 locations. For more information see FIG.4-2.

<Measuring Point For Luminance Variation>

<Measuring Point For Surface Luminance>

@ H,V: Active Area

FIG.4-2 Measure Point for Luminance

Product Specification

Notes:

- 4) The Gray To Gray Response Time is defined as the following figure and shall be measured by switching the input signal for "Gray To Gray ". (By RD805)
 - Gray step: 5 Step

Global LCD Panel Exchange Center

- $T_{GTG\ AVR}$ is the total average time at rising time and falling time for "Gray To Gray ". For the GTG measurement, the sampling rate of oscilloscope is 500k/s.

Table 4-2. GTG Gray

Gray to Gray		Rising Time						
		G1023	G767	G511	G255	G0		
	G1023							
	G767							
Falling Time	G511				\			
	G255							
	G0							

Response Time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

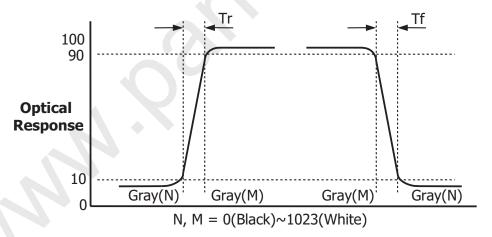


FIG.4-3 Response Time

Product Specification

Notes:

5) **Viewing Angle** is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.4-4. **(By PR880)**

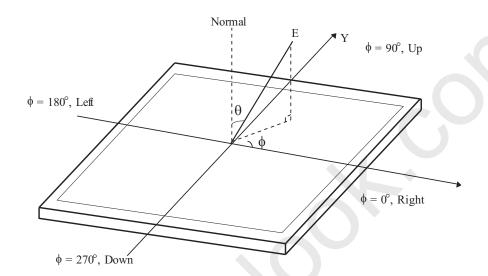


FIG.4-4 Viewing Angle

6) **Gamma Value** is approximately 2.2. For more information see below table.

Table 4-3. Gray Scale Specification

Gray Level	Relative Luminance [%](Typ)
-	
0	0.10
63	0.30
127	1.08
191	2.50
255	4.72
319	7.70
383	11.49
447	16.20
511	21.66
575	28.20
639	35.45
703	43.80
767	53.00
831	63.30
895	74.48
959	86.80
1023	100

Ver. 1.0 May. 13, 2020 26 / 35

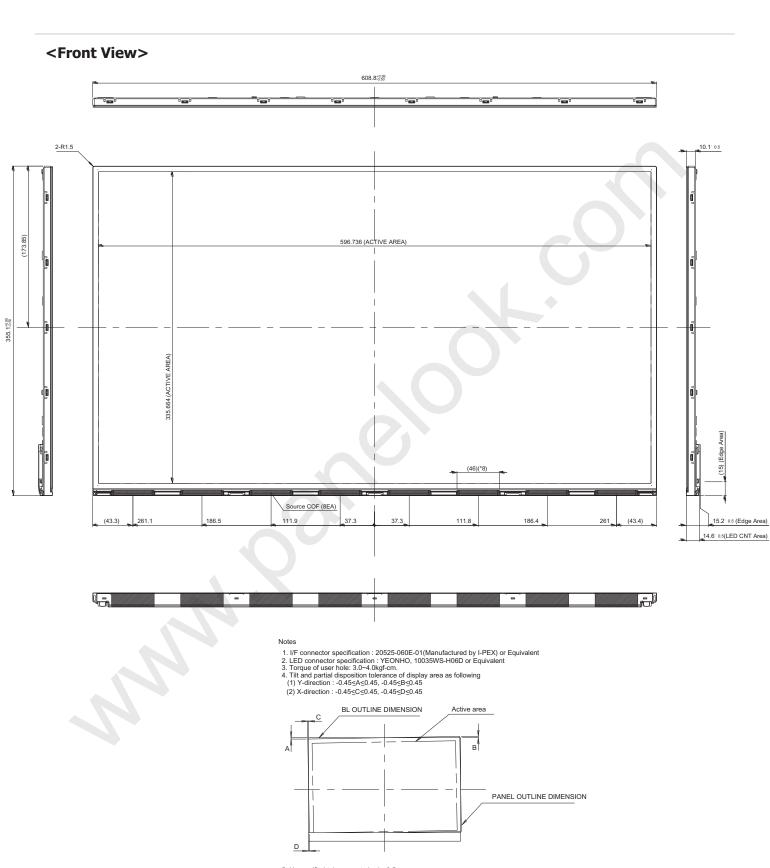
Product Specification

5. Mechanical Characteristics

The contents provide general mechanical characteristics. In addition the figures in the next page are detailed mechanical drawing of the LCD.

Outline Dimension	Horizontal	608.80 mm			
	Vertical	355.10 mm			
	Depth	15.20 mm			
Danal Auga	Horizontal	-			
Bezel Area	Vertical				
Active Dieplay Area	Horizontal	596.74 mm			
Active Display Area	Vertical	335.66 mm			
Weight	Typ.: 2,550g, Max.: 2,680g				
Surface Treatment	Anti-Glare treatment of the front polarizer (Haze25%, 3H)				

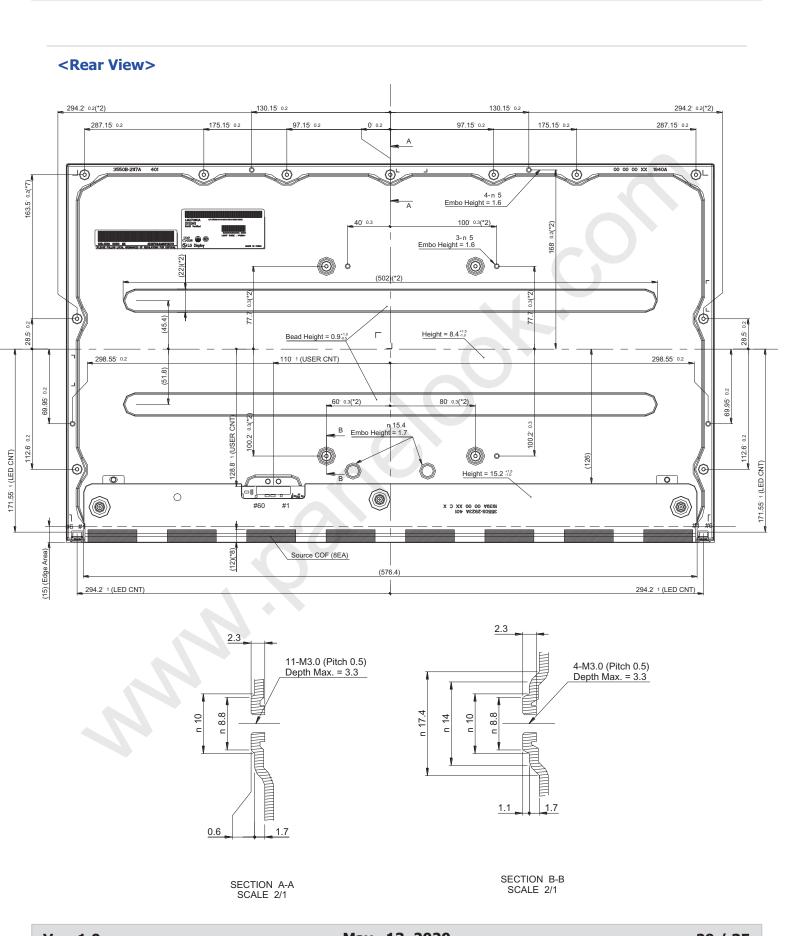
Note: Please refer to a mechanical drawing in terms of tolerance at the next page.


- Outline dimensions (horizontal, vertical and outside depth) are measured by using vernier calipers.

- The inside depth dimensions are measured by using height gauge, when LCM is put face down onto a flat surface.

Product Specification

5. Unspecified tolerances to be ` 0.5 6. The LCM warp(warpage) is less than 1.0 on the surface plate 7. The COF area is weak & sensive, so please don't press the COF area 8. Undifined height should follow the 3D modeling data


Ver. 1.0 May. 13, 2020 28 / 35

LM270WQA **Liquid Crystal Display**

Product Specification

Product Specification

6. Reliability

Environment test condition

No	Test Item	Condition	Notes
1	High temperature storage test	T _a = 60℃, 240h	1
2	Low temperature storage test	T _a = -20℃, 240h	1
3	High temperature operation test	T _a = 50℃, 50%RH, 240h	1
4	Low temperature operation test	$T_a = 0^{\circ}C$, 240h	1
5	Humidity condition operation	T _a = 40℃, 90%RH	1
6	Altitude Operating Storage / Shipment	0 - 16,400 feet (5,000m) 0 - 40,000 feet (12,192m)	
7	Maximum storage humidity for 4 corner light leakage Mura	Max 70%RH, T _a = 40℃	

Note 1) Result Evaluation Criteria:
TFT-LCD panels test should take place after cooling enough at room temperature.
In the standard condition, there should be no particular problems that may affect the display function.

^{*} T_a= Ambient Temperature

Product Specification

7. International Standards

7-1. Safety

- a) IEC 62368-1, The International Electro-technical Commission(IEC).
 Audio/video, Information and Communication Technology Equipment Safety Safety Requirements.
- b) EN 62368-1, European Committee for Electro-technical Standardization (CENELEC) Audio/video, Information and Communication Technology Equipment Safety Requirements
- c) UL 62368-1, UL LLC.
 - Audio/video, Information and Communication Technology Equipment Safety Requirements
- d) CAN/CSA C22.2 No.62368-1, Canadian Standards Association (CSA).
 Audio/video, Information and Communication Technology Equipment Safety Requirements
- e) IEC 60950-1, The International Electro technical Commission (IEC). Information Technology Equipment - Safety - Part 1 : General Requirements

7-2. Environment

a) RoHS, Commission Delegated Directive (EU) 2015/863 of 31 March 2015 amending Annex II to Directive 2011/65/EU of the European Parliament and of the Council

Product Specification

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

А	В	С	D	Е	F	G	Н	I	J	K	L	М

A,B,C: Size(Inch)

E: Month

D: Year

F ∼ M: Serial No.

Notes:

1) Year

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	С	D	Е	F	G	Н	J	K

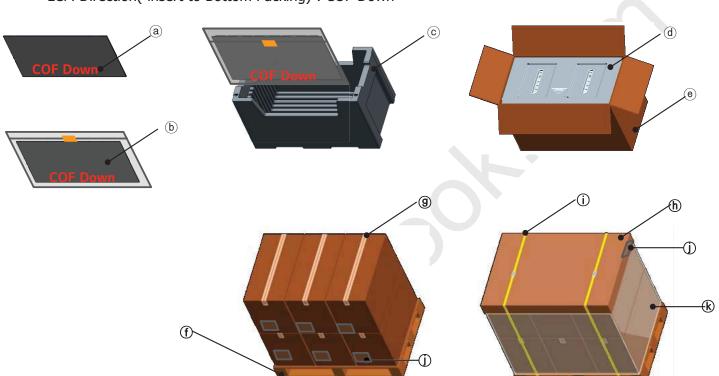
2) Month

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module.

This is subject to change without prior notice.



Product Specification

8-2. Packing Form

a) Package quantity in one box: 10ea
Package quantity in one Pallet: 60ea
b) Box Size: 365mm X 710mm X 448mm
C) Pallet Ass'y Size: 1140mmX740mmX1019mn

* LCM Direction(insert to Bottom Packing) : COF Down

No.	Description	Material
(a)	LCM	-
(b)	AL-Bag	AL
©	Packing,Bottom	EPS
(d)	Packing,Top	EPS
e	Box	Paper(SW)
(f)	Pallet	Plywood
9	Tape	OPP
(h)	Angle Cover	Paper(SW)
(i)	BAND	PP
①	LABEL	YUPO PAPER
(k)	Wrap	-

Ver. 1.0 May. 13, 2020 33 / 35

Product Specification

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- 1) You must mount a module using holes arranged in rear side.
- 2) You should consider the mounting structure so that uneven force(ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- 3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- 4) You should adopt radiation structure to satisfy the temperature specification.
- 5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- 6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- 7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- 8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- 9) Do not open the case because inside circuits do not have sufficient strength.
- 10) System frame should not have an interference with panel which can cause LC Leakage/Panel Crack due to the contraction of system frame at low temperature condition or panel damage by any other circumstances.

9-2. Operating Precautions

- 1) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- 2) Brightness depends on the temperature.(In higher temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on)
- 3) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- 4) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- 5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- 6) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- 7) A screw which is fastened up the steels should be a machine screw.(if not, it causes metallic foreign material and deal LCM a fatal blow)
- 8) Please do not set LCD on its edge.
- 9) When LCMs are used for public display, defects such as Yogore & image sticking can not be quaranteed.
- 10) LCMs cannot support "Interlaced Scan Method"
- 11) When this reverse model is used as a forward-type model (PCB on top side) or a Portrait-type mode at storage and operation, LGD can not guarantee any defects of LCM.
- 12) Please conduct image sticking test after 2-hour aging with Rolling Pattern at normal temperature. $(25\sim40^{\circ})$

Product Specification

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions For Strong Light and Hazardous Materials Exposure

Strong light exposure causes degradation of polarizer and color filter.

The LCM should be avoided direct contact with hazardous materials such as sulfur, acetic acid, chlorine, etc. These materials may cause chemical reaction such as sulfurization, corrosion, discoloration, etc.

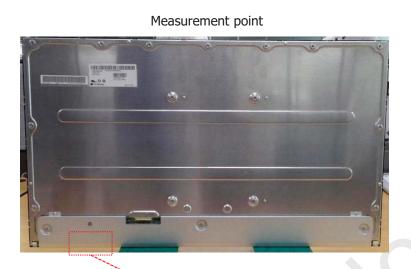
9-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- 1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- 2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6. Handling Precautions For Protection Film

- 1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- 2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- 3) You can remove the glue easily. When the glue remains on the bezel surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

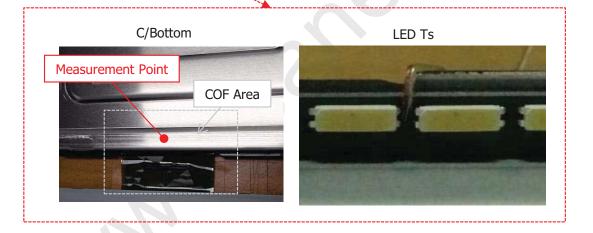

LM270WQA **Liquid Crystal Display**

Product Specification

APPENDIX

■ LCM test result for operating HDR function

1) The temperature data of the LCM was measured by using a contact thermocouple (see attached Fig).

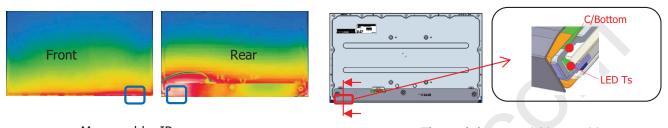

Temperature Meter (Lutron TM-947SD / 4ch)

Circuit	Custom one-chip of microprocessor LSI circuit.
Channels	T1, T2, T3, T4, T1-T2.
Sensor type	Type K thermocouple probe. Type J/T/E/R/S thermocouple probe. PT 100 ohm probe * Cooperate with an 0.00385 alpha coefficient, meet DIN IEC 751.
Resolution	0.1°C/1°C, 0.1°F/1 °F.

Sensor Resolution Ran		Range	Accuracy
Туре К	0.1 ℃	-50.1 to -100.0 °C	± (0.4%+1°C)
		-50.0 to 999.9 °C	± (0.4%+0.5°)
	1 °C	1000 to 1300 °C	± (0.4%+1°C)
	0.1 F	-58.1 to -148.0 T	± (0.4% + 1.8 F)
	SOSTIMATE .	-58.0 to 999.9 F	± (0.4%+1F)
	1 °F	1000 to 2372 F	± (0.4%+2F)

#7 COF area

Luminance(nit)	LED String Current(mA)	LED String Voltage(V) (Tolerance : ± 1.6V)
400	(85mA)	(46.1)
450	(95mA)	(46.4)
500	(110mA)	(46.9)



Product Specification

APPENDIX

■ LCM Test Result for Operating HDR Function

1) It is recommended that thermal sensor in system should be placed on the surface of C/Bottom near the LED with high temperature when measured by IR camera.

Measured by IR camera

Thermal data acquisition position

2) Measurement of temperature by time. When the temperature is over 77.7℃ on C/Bottom, defects are founded due to thermal effect.

Table 1 : Temperature data at typical luminance(85mA), ambient temperature(50 $^{\circ}$ C)

85mA (Typ)	Measure Point Temp. (Ambi. 50℃)					
Time(min)	C/Bottom(°C)	LED Ts(°C)	LED Ts - C/Bottom(°C)			
30	75.4	79.6	4.2			
60	76.7	80.9	4.2			
90	77.6	81.7	4.1			
120	77.7	81.9	4.2			

Table 2 : Temperature data at peak luminance(110mA), ambient temperature(25℃)

110mA (Peak)	Measure Point Temp. (Ambi. 25℃)			Remark		
Time(sec)	C/Bottom(°C)	LED Ts(℃)	LED Ts - C/Bottom(°C)	Interval	Current	
Base	54.7	58.9	3.9	120min	85mA(Typ.)	
30	55.8	61.5	5.7			
60	56.4	62.3	5.9	0.5min	110mA(Peak.)	
90	56.8	62.7	5.9			
120	57.1	63.0	5.9			
150	57.4	63.3	5.9			
180	57.7	63.7	6.0			
240	58.1	64.1	6.0	1min		
300	58.5	64.4	5.9			
360	58.7	64.7	6.0			
420	59.0	64.9	5.9			
480	59.1	65.2	6.1			
540	59.4	65.4	6.0			
600	59.6	65.6	6.0			
900	60.3	66.3	6.0	5min		
1200	60.6	66.5	5.9			
1500	60.8	66.8	6.0			
1800	61.0	66.9	5.9			