

Document Title	M090AWA5 R0 Pi	roduct Specific	ation	Page No.	1/28	
Document No.		Issue date	2019/11/25	Revision	00	

Product Specification

To:

Product Name: M090AWA5 R0

Document Issue Date: 2019/11/25

	Customer
	SIGNATURE
Please return 1	copy for your confirmation with your
signature and o	

InfoVision Optoelectronics					
<u>SIGNATURE</u>					
REVIEWED BY CQM					
PREPARED BY FAE					

Note: 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

FQ-7-30-0-009-03D

Document Title	M090AWA5 R0 Pr	oduct Specific	ation	Page No.	2/28
Document No.		Issue date	2019/11/25	Revision	00

Revision	Date	Page	Revised Content/Summary	Remark
00	2019/11/25		First issued.	
			+	

Document Title	oduct Specification		Page No.	3/28
Document No.	Issue date	2019/11/25	Revision	00

CONTENTS

1.0	GENERAL DESCRIPTIONS	4
0.0		
2.0	ABSOLUTE MAXIMUM RATINGS	/
3.0	OPTICAL CHARACTERISTICS	9
4.0	ELECTRICAL CHARACTERISTICS	12
5.0	MECHANICAL CHARACTERISTICS	21
6.0	RELIABILITY CONDITIONS	23
7.0	PACKAGE SPECIFICATION	24
8.0	LOT MARK	25
9.0	GENERAL PRECAUTION	27

Document T	tle	M090AWA5 R0 P	roduct Specific	ation	Page No.	4/28
Document N	lo.		Issue date	2019/11/25	Revision	00

1.0 **General Descriptions**

Introduction

The M090AWA5 R0 is a Color Active Matrix Liquid Crystal Display with a back light system. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 9.0 inch diagonally measured active display area with HD resolution 1,280 horizontal by 720 vertical pixels array.

Features

- Supported HD Resolution
- LVDS Interface
- Wide View Angle
- Compatible with RoHS Standard

1.3 Produc	t Summary		
Items		Specifications	Unit
Screen Diagonal		9.0	inch
Active Area (H x V)		198.72x 111.78	mm
Number of Pixels (H x	(V)	1,280 x 720	-
Pixel Pitch (H x V)		0.15525 x 0.15525	mm
Pixel Arrangement		R.G.B. Vertical Stripe	-
Display Mode		Normally Black	-
White Luminance		880 (Typ.) @ Center & 25℃	cd /m ²
Contrast Ratio		1,000 (Typ.) @ Center & 25°C	-
Response Time		30 (Typ.) @ 25℃	ms
Input Voltage		3.3(Typ.)	V
Power Consumption		7.275 (Max.) @ White pattern ,FV=60Hz	W
Weight		335 (Max.)	g
Outline Dimension (H	Without PCB	212.20 (Typ.) x 127.50(Typ.) x 7.90 (Max.)	mm
x V x D)	With PCB	212.20 (Typ.) x 127.50(Typ.) x 10.76 (Max.)	mm
Electrical Interface (Lo	ogic)	LVDS	-
Support Color		16.7 M	-
NTSC		70 (Typ.)	%
Surface Treatment		AG,3H	-
Surface reflectance (S	SCI)	6.0% (Max.)	-
			_

Document Title	Title M090AWA5 R0 Product Specification		ation	Page No.	5/28
Document No.		Issue date	2019/11/25	Revision	00

1.4 Functional Block Diagram

Figure 1 shows the functional block diagram of the LCD module.

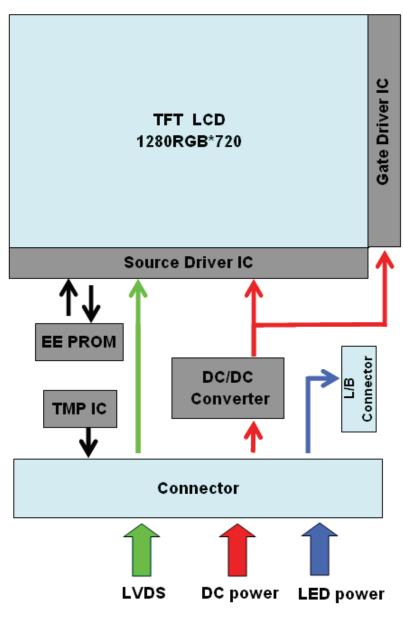


Figure 1 Block Diagram

Document Title	M090AWA5 R0 Pr	oduct Specific	ation	Page No.	6/28
Document No.		Issue date	2019/11/25	Revision	00

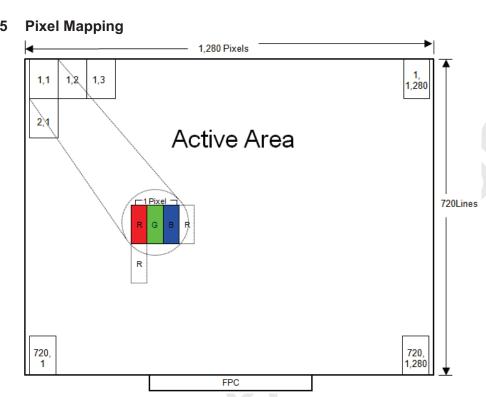


Figure 2 **Pixel Mapping**

Document Title	M090AWA5 R0 Pr	oduct Specific	ation	Page No. Revision	7/28
Document No.		Issue date	2019/11/25	Revision	00

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Logic Supply Voltage	V_{DD}	-0.3	4.0	V	(1),(2),
Storage Temperature	Ta	-40	90	${\mathbb C}$	(3),(4)
Operating Temperature	Tgs	-30	85	°C	(1),(2),
Operating remperature	J.				(3),(4),(5)

Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm 10\%$ RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 57.8° C, and no condensation of water. Besides, protect the module from static electricity.

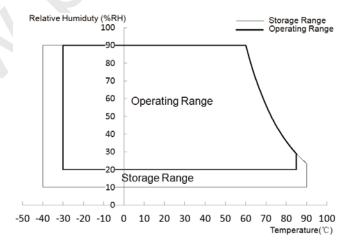


Figure 3 Absolute Ratings of Environment of the LCD Module

Global LCD Panel Exchange Center

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	M090AWA5 R0 Pr	Page No.	8/28		
Document No.		Issue date	2019/11/25	Revision	00

Note (5) The graph below is reference data as LCD module only

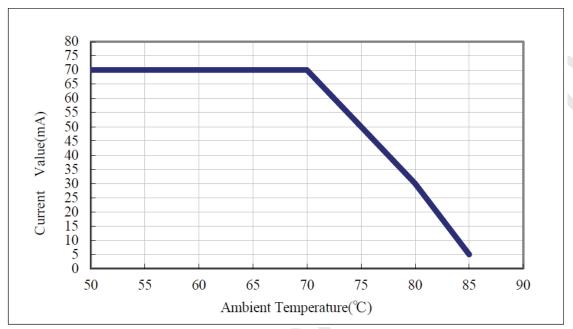


Figure 4 Current of LED vary with environmental temperature

Document Title	M090AWA5 R0 Pr	Page No.	9/28		
Document No.		Issue date	2019/11/25	Revision	00

3.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes.

Table 2 Optical Characteristics

Table 2 Optical Characteristics									
Item	Conditions			Min.	Тур.	Max.	Unit	Note	
			θ *+	75	80	-			
Viewing Angle	Horizont	aı	θ _{x-}	75	80	-	da aveza	(1),(2),(3),	
(CR≥10)	Vertica	1	θ _{y+}	75	80	-	degree	(4)(8)	
	vertica	ı	Ө _{у-}	75	80	-			
	Ta=25℃	Ce	enter	700	1,000	-		(4) (2)	
Contrast Ratio	1a-25 C	LR 45	°,UD 30°	200	-	-		(1),(2),	
Contrast Natio	Ta=-30°C ~Tp= 85°C	LR 45	°,UD 30°	100		1		(4),(8)	
		Ta=	=25℃	-	30	40		(4) (2)	
Response	Rising +	Ta	=0℃	1-	65	95	ma	(1),(2),	
Time	Falling	Falling Ta=-20℃		-	150	200	ms	(5),(8) $\theta x = \theta y = 0^{\circ}$	
		Ta=	:-30℃		300	450		dx-dy-0	
	Red	x t			0.638		-		
	Red y Green x Green y Blue x Blue y White x			0.344	Typ. +0.04	-			
Color				0.317		-	(4) (2)		
Color Chromaticity			Тур.	0.625		-	(1),(2), (3),(8) θx=θy=0°		
(CIE1931)			-0.04	0.149		-			
(CIL 1931)				0.078		-	UX-Uy-U		
				0.310		-			
	Whi	te y			0.330		-		
								(1),(2),	
NTSC	-			65	70	-	%	(3),(8)	
		ı						θx=θy=0°	
White	Ta=25℃	Сє	enter	700	880	-		(1),(2),	
Luminance	Ta=-40℃ ~Tp=70℃	LR 45	°,UD 30°	190	240	-		(6),(8)	
Luminance Uniformity	9 Points		70	-	-	%	(1),(2), (7),(8) θx=θy=0°		
Reflectance		SCI		-	5.5	6.0	%	(9)	

Document Title	M090AWA5 R0 Pi	Page No.	10/28		
Document No.		Issue date	2019/11/25	Revision	00

Note (1) Measurement Setup:

Global LCD Panel Exchange Center

The LCD module should be stabilized at given ambient temperature (25°C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.

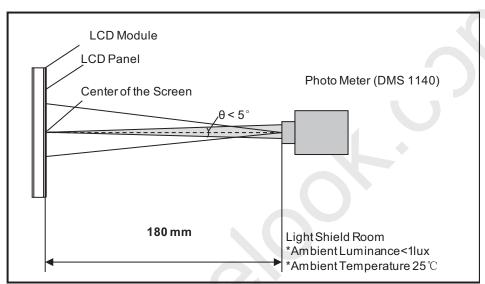


Figure 5 **Measurement Setup**

Note (2) The LED input parameter setting as:

I_{LED}: 280mA

Note (3) Definition of Viewing Angle

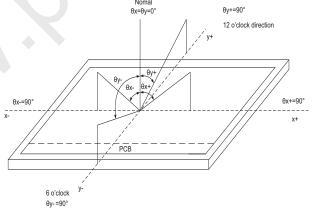


Figure 6 **Definition of Viewing Angle**

Note (4) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression:

Contrast Ratio (CR) = The luminance of White pattern/ The luminance of Black pattern Note (5) Definition of Response Time (T_R, T_F)

Document Title	M090AWA5 R0 Pr	Page No.	11/28		
Document No.		Issue date	2019/11/25	Revision	00

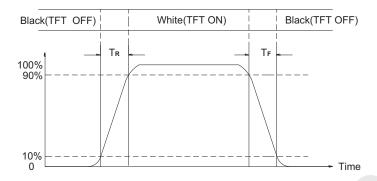


Figure 7 Definition of Response Time

Note (6) Definition of Luminance of White

Measure the luminance of White pattern (Ref.: Active Area)

Display Luminance=L1 (center point)

Note (7) Definition of Luminance Uniformity (Ref.: Active Area)

Measure the luminance of White pattern at 9 points.

Luminance Uniformity= Min.(L1, L2, ... L9) / Max.(L1, L2, ... L9)

H—Active Area Width, V—Active Area Height, L—Luminance

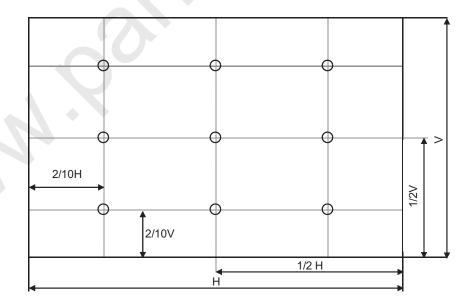


Figure 8 Measurement Locations of 9 Points

Note (8) All optical data are based on IVO given system & nominal parameter & testing machine in this document.

Document Title	M090AWA5 R0 Pi	Page No.	12/28		
Document No.		Issue date	2019/11/25	Revision	00

4.0 **Electrical Characteristics**

4.1 Interface Connector

Table 3 Signal Connector Type

Item	Description
Manufacturer / Type	MOLEX 505110-4091

		Table 4 Signal Connector Pin Assignme	nt
Pin No.	Symbol	Description	Remarks
1	GND	Ground	-
2	GND	Ground	-
3	PIND3	LVDS differential data input	-
4	NIND3	LVDS differential data input	-
5	GND	Ground	-
6	CLKP	LVDS differential Clock input	-
7	CLKN	LVDS differential Clock input	-
8	GND	Ground	-
9	PIND2	LVDS differential data input	-
10	NIND2	LVDS differential data input	-
11	GND	Ground	-
12	PIND1	LVDS differential data input	-
13	NIND1	LVDS differential data input	-
14	GND	Ground	-
15	PIND0	LVDS differential data input	-
16	NIND0	LVDS differential data input	-
17	GND	Ground	-
18	SDA	Digital temperature sensor serial data	-
19	SCL	Digital temperature sensor serial clock	-
20	NC	NC	-
21	NC	NC	-
22	GND	Ground	-
23	VDDA	Power supply for 3.3V	-
24	VDDA	Power supply for 3.3V	-
25	VDDA	Power supply for 3.3V	-
26	VDDA	Power supply for 3.3V	-
27	VDDA	Power supply for 3.3V	-

All rights strictly reserved reproduction or issue to third parties in any form whatever is not permitted without written authority from the proprietor

Document Title	M090AWA5 R0 Pr	Page No.	13/28		
Document No.		Issue date	2019/11/25	Revision	00

28	NC	NC	-
29	GND	Ground	-
30	GND	Ground	-
31	GND	Ground	-
32	NC	NC	-
33	CATHODE1	Power supply for LED circuit(Cathode1)	
34	CATHODE2	Power supply for LED circuit(Cathode2)	-
35	CATHODE3	Power supply for LED circuit(Cathode3)	<i>-</i>
36	CATHODE4	Power supply for LED circuit(Cathode4)	-
37	NC	NC	-
38	ANODE	Power supply for LED circuit (Anode)	-
39	ANODE	Power supply for LED circuit (Anode)	-
40	ANODE	Power supply for LED circuit (Anode)	-

Document Title	M090AWA5 R0 Pr	Page No.	14/28		
Document No.		Issue date	2019/11/25	Revision	00

4.2 Signal Electrical Characteristics

4.2.1 Signal Electrical Characteristics for LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.

Table 5 LVDS Receiver Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input Hi	ıh Vth	-	-	+150	mV	V _{CM} =+1.2V
Differential Input Low Thresho	ld Vtl	-150	-	-	mV	V _{CM} =+1.2V
Magnitude Differential Inp	ut V _{ID}	150	-	600	mV	-
Strobe Width	TSW	0.4	-	-	UI	FLVCK≤65
Common Mode Voltage	V_{CM}	1.0	1.2	1.7- VID /2	V	-
Common Mode Voltage Offse	ΔV_{CM}	-	-	50	mV	V _{CM} =+1.2V

Note (1) Input signals shall be low or Hi- resistance state when VDD is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

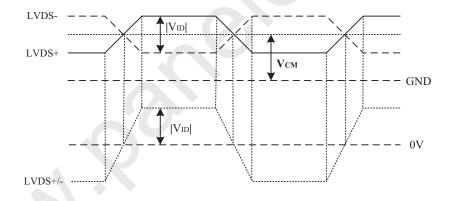


Figure 9 Voltage Definitions

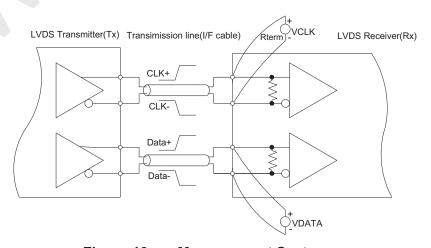


Figure 10 Measurement System

Document Title	M090AWA5 R0 Pr	M090AWA5 R0 Product Specification			15/28
Document No.		Issue date	2019/11/25	Revision	00

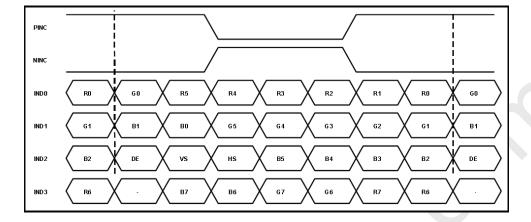


Figure 11 **Data Mapping**

Document Title	M090AWA5 R0 Pr	M090AWA5 R0 Product Specification			16/28
Document No.		Issue date	2019/11/25	Revision	00

4.2.2 LVDS Receiver Internal Circuit

Figure 12 shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

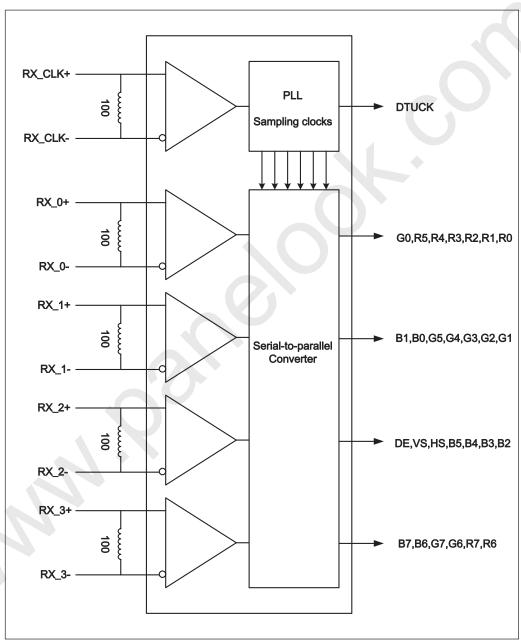


Figure 12 Receiver Internal Circuit

Document Title	M090AWA5 R0 Pi	oduct Specific	ation	Page No.	17/28
Document No.		Issue date	2019/11/25	Revision	00

4.3 Interface Timings

Table 6 Interface Timings

			_		
Parameter	Symbol	Min.	Тур.	Max.	Unit
LVDS Clock Frequency	Fclk	58.4	59	74.9	MHz
H Total Time	HT	1,340	1,354	1,470	Clocks
H Active Time	HA		1,280		Clocks
V Total Time	VT	726	726	849	Lines
V Active Time	VA		720		Lines
Frame Rate	FV	55	60	65	Hz

Note1: HT * VT *Frame Frequency \leq 74.9 MHz

Note2: All reliabilities are specified for timing specification based on refresh rate of 60Hz.

A090AWA5 R0 is secured only for function under lower refresh rate; 60Hz at Normal mode, 55Hz at Power save mode. Don't care flicker level (power save mode)

Document Title	M090AWA5 R0 Pr	oduct Specific	ation	Page No.	18/28
Document No.		Issue date	2019/11/25	Revision	00

4.4 Input Power Specifications

Input power specifications are as follows.

 Table 7
 Input Power Specifications

Table 7 input 1 over openinguions							
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
System Power S	upply						
LCD Drive Voltag	ge (Logic)	V_{DD}	3.0	3.3	3.6	V	(1),(2)
VDD Current	White Pattern	I _{DD}	-	-	0.245	Α	
VDD Power Consumption	White Pattern	P _{DD}	-	-	0.807	W	(1),(4)
LCD Self Test	VIH		3.0	-	3.6	V	(4)
(BIST)	VIL	V_{BIST}	0	-	0.5	V	(1)
Rush Current		I _{Rush}	-	-	1.5	Α	(1),(5)
Allowable Logic/L		V_{VDD-RP}			200	mV	(1),(3)
LED Power Supp	oly						
LED Input Voltag	е	V _{LED}	19.6	21	23.1	V	(1),(2)
LED Power Cons	sumption	P _{LED}	-	5.88	6.468	W	(1),(6)
LED Forward Voltage		V _F	2.8	3.0	3.3	V	(4) (0) (0)
LED Forward Current		I _F	-	70	-	mA	(1),(2),(6)
LED Life Time		LT	15,000	-	-	Hours	(1),(5)

Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm$ 10%RH.

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

Note (3) The specified V_{DD} current and power consumption are measured under the V_{DD} = 3.3 V, FV= (60) Hz condition and White pattern.

Note (4) The figures below is the measuring condition of V_{DD} . Rush current can be measured when T_{RUSH} is 0.5 ms.

Document Title	M090AWA5 R0 Pr	M090AWA5 R0 Product Specification			19/28
Document No.		Issue date	2019/11/25	Revision	00

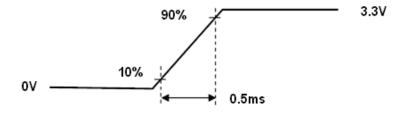
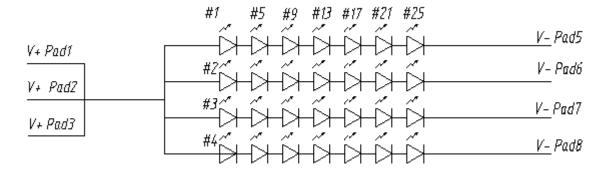
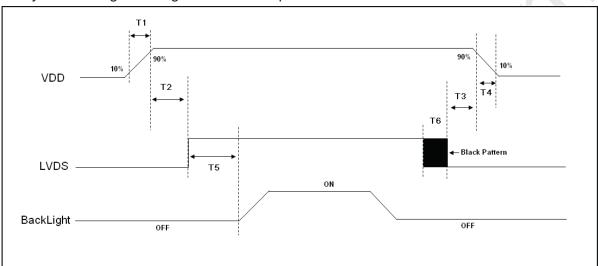



Figure 13 **V_{DD}** Rising Time

Note (5) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 70% of the minimum value under normal operating condition. Note (6) Definition of VLED and PLED $V_{LED} = V_F \times 7$, $I_{LED} = I_F \times 4$, PLED = $V_{LED} \times I_{LED}$



Document Title	M090AWA5 R0 Pi	roduct Specific	ation	Page No.	20/28
Document No.		Issue date	2019/11/25	Revision	00

4.5 Power ON/OFF Sequence

- 1. Interface signals are also shown in the chart. Signals from any system shall be Hiresistance state or low level when VDD voltage is off.
- 2. When system first start up, should keep the VDD high time longer than 200ms, otherwise may cause image sticking when VDD drop off.

Note 1: When VDDA was less than VTH, re · power (OFF/ON) supply is necessary.

Note 2: Before the power supply is turned off, please make sure to display the black pattern for 2 frames' time

Note 3: Before the power supply is turned on again, please make sure the OFF sequence already done

Figure 14 **Power Sequence Table 8 Power Sequencing Requirements**

		•			
Parameter	Symbol	Unit	min	typ	max
VDDA Rising Time	T1	ms	0.0002		10
VDDA ready to LVDS start	T2	ms	200		
Back light OFF to VIN off	Т3	ms	0		
VDDA Falling Time	T4	ms	1		100
LVDS ready to Back light ON	T5	ms	16.7		
Black Pattern before Back light OFF	Т6	ms	33.3		

Document Title	M090AWA5 R0 Pi	roduct Specific	ation	Page No.	21/28
Document No.		Issue date	2019/11/25	Revision	00

5.0 Mechanical Characteristics

5.1 Outline Drawing

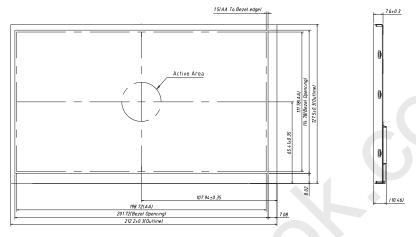
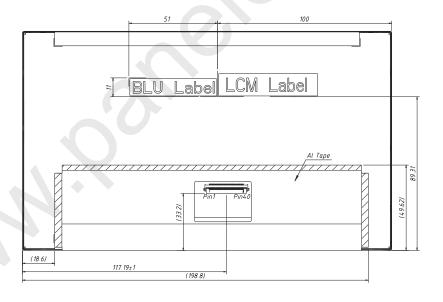



Figure 15 Reference Outline Drawing (Front Side)

Unit: mm

Unit: mm

Figure 16 Reference Outline Drawing (Back Side)

Note: Not marked tolerance is ± 0.3 mm.

Document Title	M090AWA5 R0 Pr	oduct Specific	ation	Page No.	22/28
Document No.		Issue date	2019/11/25	Revision	00

5.2 Dimension Specifications

Table 9 Module Dimension Specifications

Ite	em	Min.	Min. Typ. Ma		Unit
Width	Width		212.20	212.5	mm
Height		127.2 127.50 127.8		mm	
Thickness	Without PCBA	-	7.60	7.90	mm
Thickness	With PCBA	-	10.46	10.76	mm
Weight		-	335		g
BM: a-b & c	c-d	-	-	1.0	mm

Note: Outline dimension measure instrument: Vernier Caliper.

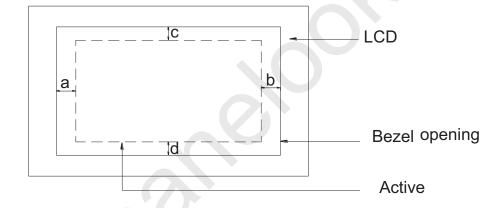


Figure 17 BM Area

Global LCD Panel Exchange Center

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	M090AWA5 R0 Pi	roduct Specific	ation	Page No.	23/28
Document No.		Issue date	2019/11/25	Revision	00

6.0 **Reliability Conditions**

Table 10 **Reliability Condition**

	Item	Package		Test Conditions	Note		
	perature/High Humidity Operating Test	Module	T _{gs} =	T_{gs} =60 $^{\circ}$ C , 90%RH, 500 hours			
High Temp	erature Operating Test	Module		T_{gs} =85 $^{\circ}$ C, 500 hours			
Low Temp	erature Operating Test	Module		T_a =-30°C, 500 hours	(3),(4)		
High Tem	perature Storage Test	Module		T _a =90℃, 500 hours	(4) (2) (4)		
Low Tem	perature Storage Test	Module		T _a =-40℃, 500 hours	(1),(3),(4)		
Shock	Non-operating Test	Module	100G ,	6ms, ±X/±Y/±Z, 3 times for each direction			
Vibration	n Non-operating Test	Module	Accelera Cycle:15 X,Z 2hou	Frequency: 8~33.3Hz, Stroke: 1.33mm Frequency: 33.3Hz~400Hz, Acceleration:2.9G Cycle:15minutes X,Z 2hours for each direction, 4 hours for Y direction (Total 8 hours)			
50D T 4	Operating		Contact Air	±8KV, 150pF(330Ohm) ±15KV, 150pF(330Ohm)	(1),(2),(6)		
ESD Test	Non operation	Module	Contact	±10KV, 150pF(330Ohm)	(4) (6)		
	Non-operating		Air	±20KV, 150pF(330Ohm)	(1),(6)		

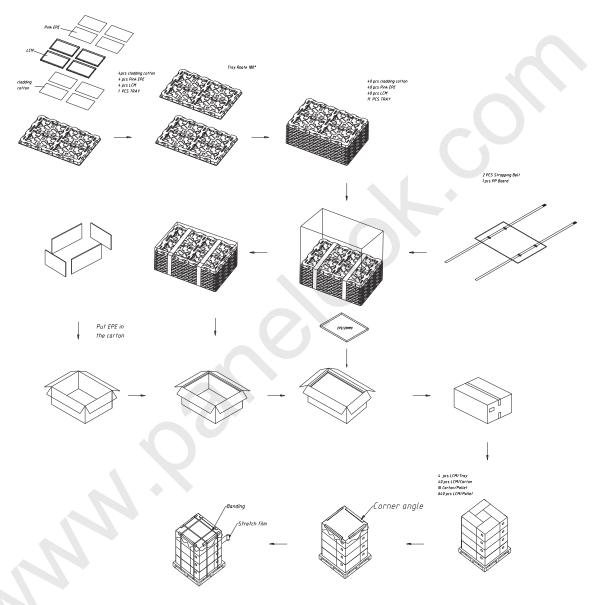
Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test.

- Note (2) The setting of electrical parameters should follow the typical value before reliability test.
- Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.

Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25 $^{\circ}$ C, Humidity: 55 \pm 10%RH. T_a= Ambient Temperature, T_{gs}= Glass Surface Temperature.

Note (5) The module should be fixed firmly in order to avoid twisting and bending.

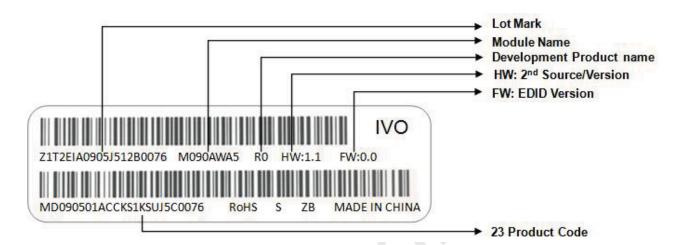
Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting.



Document Title	M090AWA5 R0 Pi	M090AWA5 R0 Product Specification					
Document No.		Issue date	2019/11/25	Revision	00		

Package Specification 7.0

Figure 18 **Packing Method**



Document Title	M090AWA5 R0 Pr	M090AWA5 R0 Product Specification					
Document No.		Issue date	2019/11/25	Revision	00		

8.0 Lot Mark

Note: This picture is only an example.

8.1 20 Lot Mark

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
																			ı

Code 1,2,4,5,6,7,8,9,10,11,16: IVO internal flow control code.

Code 3: Production Location.

Code 12: Production Year.

Code 13: Production Month.

Code 14,15: Production Day.

Code 17,18,19,20: Serial Number.

Document Title	M090AWA5 R0 Pi	Page No.	26/28		
Document No.		Issue date	2019/11/25	Revision	00

8.2 23 Product Barcode

Code 1,2: Manufacture District.

Code 3,4,5,6,7: IVO internal module name.

Code 8,9,10,13,16: IVO internal flow control code.

Code 11,12: Cell location Suzhou, China defined as "KS".

Code 14 ,15: Module location Kunshan, China defined as "KS"; Yangzhou, China defined as "YZ"; Shenzhen, China defined as "SE"; Zhuhai, China defined as "ZH"; Suzhou, China defined as "SZ".

Code 17,18,19: Year, Month, Day refer to Note(1), Note(2) and Note(3).

Note (1) Production Year

Year	2006	2007	2008	2009	2010	2011	2012	2013	 2035
Mark	6	7	8	9	Α	В	С	D	 Z

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

Note (3) Production Day: 1~V.

Code 20~23 : Serial Number.

Document Title	M090AWA5 R0 Pi	roduct Specific	ation	Page No.	27/28
Document No.		Issue date	2019/11/25	Revision	00

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1) The LCD product should be operated under normal conditions.

Normal conditions are defined as below:

Temperature: 25°C Humidity: 55±10%

Display pattern: continually changing pattern (Not stationary)

- (2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)
- (3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating.
- (4) If the absolute maximum rating value was exceeded, it may damage the module.
- (5) Do not adjust the variable resistor located on the module.
- (6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.
- (7) Image sticking may occur when the module displayed the same pattern for long time.
- (8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"
- (9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

- (1) All the operators should be electrically grounded and with Ion-blown equipment turning on when mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly.
- (2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not
- (3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly.
- (4) It is obvious that you should adopt radiation structure to satisfy the temperature specification.
- (5) So as to acquire higher luminance, the cable of the power supply should be connected directly with a minimize length.
- (6) It should be attached to the system tightly by using all holes for mounting, when the module is

All rights strictly reserved reproduction or issue to third parties in any form whatever is not permitted without written authority from the proprietor

Document Title	M090AWA5 R0 Pr	M090AWA5 R0 Product Specification					
Document No.		Issue date	2019/11/25	Revision	00		

assembled. Be careful not to apply uneven force to the module, especially to the PCB on the back.

- (7) A transparent protective film needs to be attached to the surface of the module.
- (8) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.
- (9) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.
- (10) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.
- (11) Desirable cleaners are IPA (Isopropyl Alcohol) or hexane. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (12) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module.

9.4 Handling Precaution

- (1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with lon-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.
- (2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling.
- (3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing modules as spares for long time, the following precautions must be executed.

- (1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing LCD module, obey the local environmental regulations.