Document Name	M101NWWB R3 Customer	Page 1 of 26			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

Customer Approved Specification

To: 苏州汉源电子科技有限公司

Product Name: M101NWWB R3

Document Issue Date: 2018/05/29

Customer	InfoVision Optoelectronics
SIGNATURE	SIGNATURE REVIEWED BY CQM
	PREPARED BY FAE
Please return 1 copy for your confirmation with your signature and comments.	

Note: 1. Please contact InfoVision Company before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

FQ-7-30-0-009-03

Global LCD Panel Exchange Center

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Name	M101NWWB R3 Customer	M101NWWB R3 Customer Approved Specification				
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00	

Revision	Date	Page	Old Description New Description		Remark
00	2018/05/29	All		First issued	

Document Name	M101NWWB R3 Customer	Page 3 of 26			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

CONTENTS

6
7
11
20
22
23
24
25

Document Name	M101NWWB R3 Customer Approved Specification				Page 4 of 26	
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00	

1.0 General Descriptions

1.1 Introduction

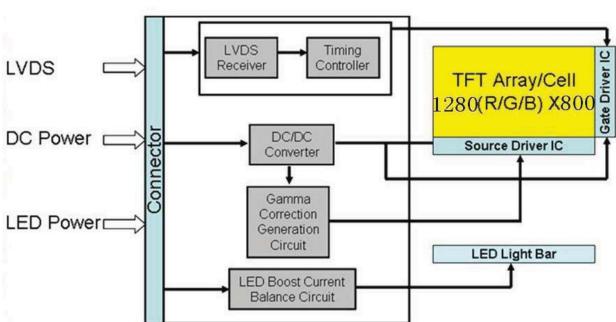
The M101NWWB R3 is a Color Active Matrix Liquid Crystal Display with a back light system. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 10.1 inch diagonally measured active display area with WXGA resolution (1280 horizontal by 800 vertical pixels array).

1.2 Features

- Supported WXGA Resolution
- LVDS Interface
- Wide View Angle
- Compatible with RoHS Standard

1.3 Product Summary

1.3 Product Summary						
Items		Specifications	Unit			
Screen Diagonal		10.1	inch			
Active Area (H x V)		216.96 x135.60	mm			
Number of Pixels (H	xV)	1280x800	-			
Pixel Pitch (H x V)		0.1695×0.1695	mm			
Pixel Arrangement		R.G.B. Vertical Stripe	-			
Display Mode		Normally Black	-			
White Luminance		350 (Typ.)	cd /m ²			
Contrast Ratio		800(Typ.)	-			
Response Time		25(Typ.)	ms			
Input Voltage		3.3 (Typ.)	V			
power consumption		3.7 (Max.)	W			
Weight	4	160(Max.)	g			
Outline Dimension	w/o PCB	229.46(Typ.) ×149.10(Typ.) ×2.80(Max.)	mm			
(H x V x D)	w/ PCB	229.46(Typ.) ×149.10(Typ.) ×4.56(Max.)	mm			
Electrical Interface (L	_ogic)	LVDS	-			
Support Color		16.7 M	-			
NTSC		45 (Typ.)	%			
Viewing Direction		All	-			
Surface Treatment		glare+3H	-			



Document Name	M101NWWB R3 Customer	M101NWWB R3 Customer Approved Specification				
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00	

1.4 Functional Block Diagram

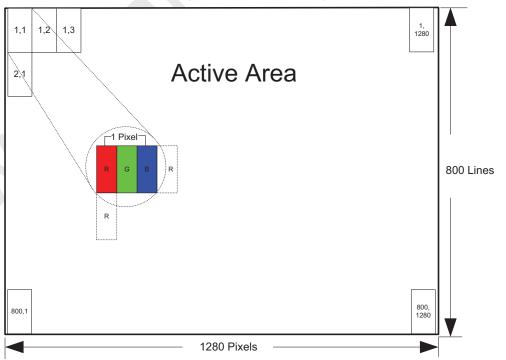

Figure 1 shows the functional block diagram of the LCD module.

Figure 1 Block Diagram

1.5 Pixel Mapping

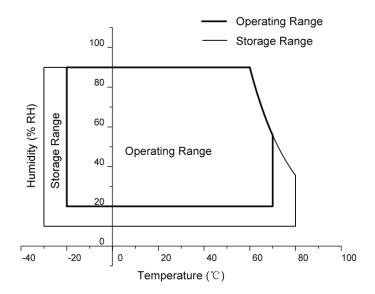
Figure 2 Pixel Mapping

Document Name	M101NWWB R3 Customer	Page 6 of 26			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

2.0 Absolute Maximum Ratings

Table 1 Electrical & Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Logic Supply Voltage	V_{DD}	-0.3	4.0	V	
Logic Input Signal Voltage	V _{Signal}	-0.3	4.0	V	(4) (0) (0) (4)
Operating Temperature	T _{gs}	-20	70	°C	(1),(2),(3),(4)
Storage Temperature	T _a	-30	80	°C	


Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.

Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25°C, Humidity: 55±10%RH.

Note (3) Unpredictable results may occur when it was used in extreme conditions. Ta= Ambient Temperature, T_{os}= Glass Surface Temperature. All the display fineness should be inspected under normal conditions.

Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 39°C, and no condensation of water. Besides, protect the module from static electricity.

Figure 3 Absolute Ratings of Environment of the LCD Module

Document Name	M101NWWB R3 Customer	Page 7 of 26			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

3.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes.

Table 2 Optical Characteristics

Item	Conditions		Min.	Тур.	Max.	Unit	Note
	Horizontal	θ *+	75	85	-		
Viewing Angle	Horizontai	θ _{x-}	75	85	-	domeso	(4) (2) (2) (4) (8)
(CR≥10)	Vertical	θ _{y+}	75	85	-	degree	(1),(2),(3),(4),(8)
	vertical	θ _{y-}	75	85	-		
Contrast Ratio	Center		600	800	-		(1),(2),(4),(8) $\theta x = \theta y = 0^{\circ}$
Response Time	Rising + Fallin	g	-	25	50	ms	(1),(2),(5),(8) $(8)\theta x = \theta y = 0^{\circ}$
	Red x			0.582	-		
	Red y			0.347		-	
Calar	Green x		Тур.	0.349	Тур.	-	
Color	Green y		-0.03	0.573	+0.03	-	(1),(2),(3),(8)
Chromaticity (CIE1931)	Blue x			0.164		-	θx=θy=0°
(CIE 1931)	Blue y			0.143		-	
	White x		Тур.	0.313	Тур.	-	
	White y		-0.03	0.329	+0.03	-	
NTSC	-		42	45	-	%	(1),(2),(3),(8) θx=θy=0°
White Luminance	Center		300	350	-	cd/m ²	(1),(2),(6),(8)
Luminance		70 75		_	%	(1),(2),(7),(8)	
Uniformity	9 Points		, ,	7.5		/0	θx=θy=0°

Note (1) Measurement Setup:

The LCD module should be stabilized at given ambient temperature (25°C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room.

Light Shield Room

*Ambient Luminance<2lux *Ambient Temperature 25℃

InfoVision Optoelectronics (Kunshan) Co.,LTD.							
Document Name					8 of 26		
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00		

Figure 4 Measurement Setup LCD Module .CD Panel Photo Meter (DMS 1140) Center of the Screen

180 mm

Note (2) The LED input parameter setting as:

I_LED: 80mA

PWM LED: duty 100 %

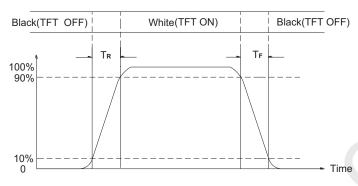
Note (3) Definition of Viewing Angle

Figure 5 Definition of Viewing Angle θy+=90° 12 o'clock direction $\theta x += 90^{\circ}$ θy-=90°

Note (4) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression

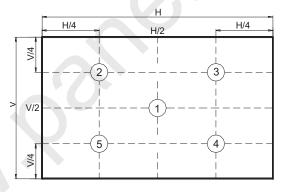
Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255, L0: Luminance of gray level

InfoVision Optoelectronics (Kunshan) Co.,LTD.							
Document Name	M101NWWB R3 Customer Approved Specification Page 9 of						
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00		

Note (5) Definition of Response Time (T_R, T_F)

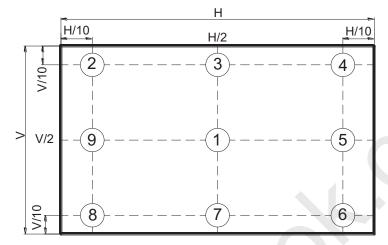
Figure 6 Definition of Response Time


Note (6) Definition of Luminance White

Measure the luminance of gray level 255 (Ref.: Active Area)

Display Luminance=L1

H—Active Area Width, V—Active Area Height, L—Luminance


Figure 7 Measurement Locations of 5 Points

Note (7) Definition of Luminance Uniformity (Ref.: Active Area) Measure the luminance of gray level 255 at 9 points. Luminance Uniformity= Min.(L1, L2, ... L9) / Max.(L1, L2, ... L9) H—Active Area Width, V—Active Area Height, L—Luminance

Document Name	M101NWWB R3 Customer	M101NWWB R3 Customer Approved Specification			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

Figure 8 Measurement Locations of 9 Points

Note (8) All optical data based on IVO given system & nominal parameter & testing machine in this document.

Document Name	M101NWWB R3 Customer	Page 11 of 26			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

4.0 Electrical Characteristics

4.1 Interface Connector

Table 3 Signal Connector Type

Item	Description
Manufacturer / Type	Starconn / 300E40-0010RA-G3
Mating Receptacle / Type (Reference)	111B40-1211TA-G3 or Compatible

Table 4 Signal Connector Pin Assignment

Pin#	Signal Name	Description	Remarks
1	NC	No Connection	-
2	VDD	Power Supply	-
3	VDD	Power Supply	-
4	VDD_EDID	VDD_EDID	-
5	SCL_EDID	SCL_EDID	-
6	SDA_EDID	SDA_EDID	-
7	NC	No Connection	-
8	LV0N	-LVDS Differential Data Input	
9	LV0P	+LVDS Differential Data Input	-
10	GND	Ground	-
11	LV1N	-LVDS Differential Data Input	-
12	LV1P	+LVDS Differential Data Input	
13	GND	Ground	-
14	LV2N	-LVDS Differential Data Input	
15	LV2P	+LVDS Differential Data Input	-
16	GND	Ground	-
17	LVCLKN	-LVDS Differential Clock Input	_
18	LVCLKP	+LVDS Differential Clock Input	
19	GND	Ground	-
20	LV3N	-LVDS Differential Data Input	
21	LV3P	+LVDS Differential Data Input	-
22	GND	Ground	-
23	LED_GND	Ground for LED Driving	-
24	LED_GND	Ground for LED Driving	-
25	LED_GND	Ground for LED Driving	-
26	NC	No Connection	-
27	LED_PWM	PWM Input Signal for LED Driver	-

All rights strictly reserved reproduction or issue to third parties in any form what ever is not permitted without written authority from the proprietor.

Document Name	M101NWWB R3 Customer	Page 12 of 26			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

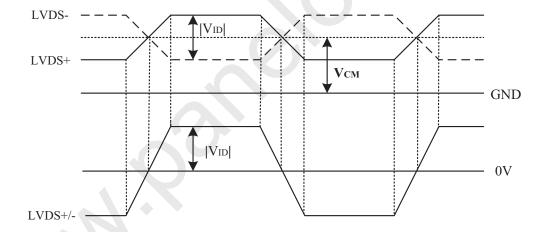
28	LED_EN	LED Enable Pin	-
29	NC	Reserved For CABC	-
30	NC	No Connection	
31	LED_VCC	Power Supply for LED Driver	
32	LED_VCC	Power Supply for LED Driver	
33	LED_VCC	Power Supply for LED Driver	
34	NC	No Connection	
35	NC	Reserved For BIST	Active high(3.3V)
36	NC	No Connection	
37	NC	No Connection	
38	NC	No Connection	
39	NC	No Connection	
40	NC	No Connection	

Document Name	M101NWWB R3 Customer	Page	13 of 26		
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

4.2 Signal Electrical Characteristics

4.2.1 Signal Electrical Characteristics For LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.


Table 5 LVDS Receiver Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	-	-	+100	mV	V _{CM} =+1.2V
Differential Input Low Threshold	VtI	-100	-	-	mV	V _{CM} =+1.2V
Magnitude Differential Input Voltage	V _{ID}	100	-	600	mV	-
Common Mode Voltage	V_{CM}	VID /2	-	2.4- V _{ID} /2	V	-

Note (1) Input signals shall be low or Hi-resistance state when VDD is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Figure 9 Voltage Definitions

Global LCD Panel Exchange Center

Document Name	M101NWWB R3 Customer	Page 14 of 26			
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

Figure 10 Measurement System

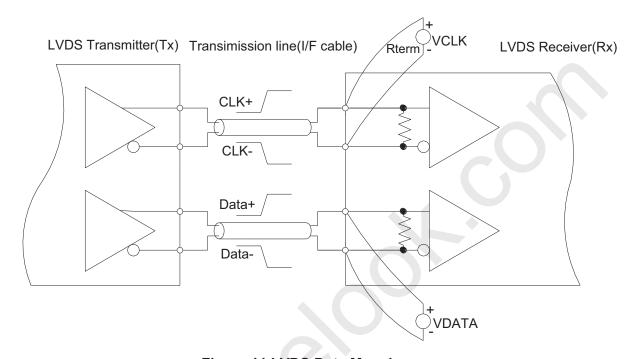
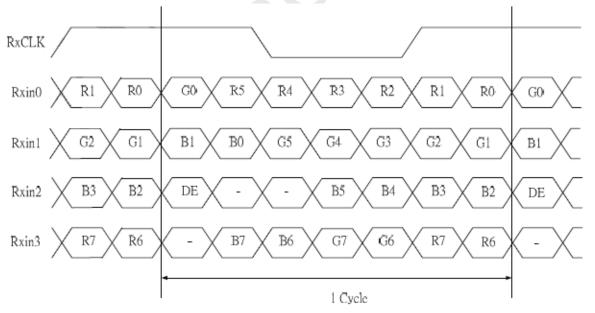
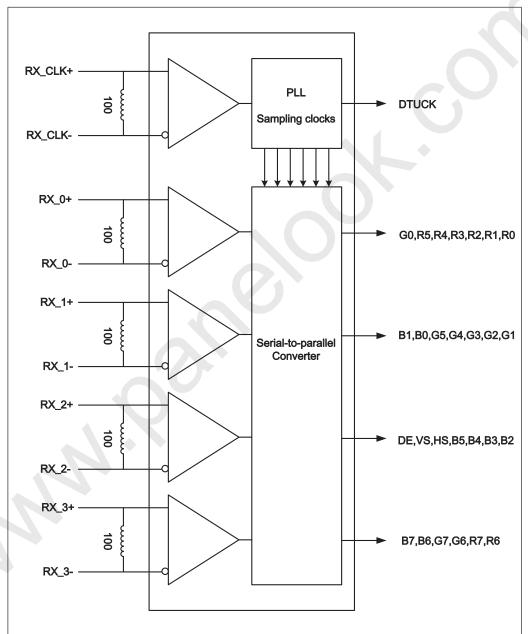



Figure 11 LVDS Data Mapping



Document Name	M101NWWB R3 Customer	M101NWWB R3 Customer Approved Specification					
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00		

4.2.2 LVDS Receiver Internal Circuit

Figure 12 shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

Figure 12 LVDS Receiver Internal Circuit

Document Name	M101NWWB R3 Customer	M101NWWB R3 Customer Approved Specification					
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00		

4.3 Interface Timings

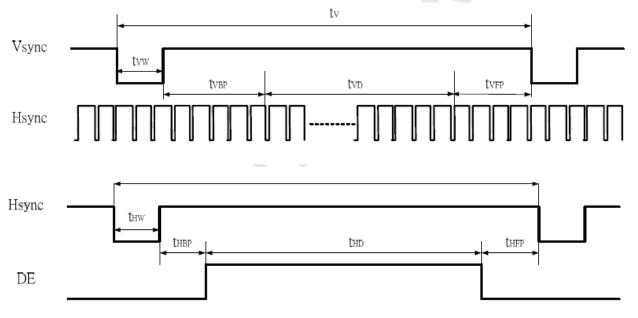

Global LCD Panel Exchange Center

Table 6 Interface Timings

Parameter	Symbol	Min.	Тур.	Max.	Unit
LVDS Clock Frequency	Fclk	68.9	71.1	73.4	MHz
H Total Time	HT	1410	1440	1470	Clocks
H Active Time	HA	1280	1280	1280	Clocks
V Total Time	VT	815	823	833	Lines
V Active Time	VA	800	800	800	Lines
Frame Rate	FV	-	60	-	Hz

4.3.1 Timing Diagram of Interface Signal (DE mode)

Figure 13 Timing Characteristics

Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page	17 of 26
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

4.4 Input Power Specifications

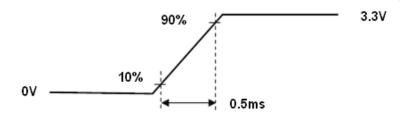
Input power specifications are as follows.

Table 7 Input Power Specifications

Parameter			Symbol	Min.	Тур.	Max.	Unit	Note
System Powe	er Supply							
LCD Drive Vol	tage (Logic)		V_{DD}	3.0	3.3	3.6	V	(1), (2)
VDD Current	White Pattern		I _{DD}	-	-	0.364	А	(1) (2)
VDD Power Consumption	White Pattern		P_{DD}	-	-	1.2	w	(1),(3),
Rush Current			I _{Rush}	-	-	1.5	Α	(1), (4)
Allowable Log Drive Ripple V			$V_{\text{VDD-RP}}$	-	<u>-</u>	300	mV	(1)
LED Power S	ирріу		<					
LED Input Vol	tage		V_{LED}	6	12	21	V	(1),(2)
LED Power Co	onsumption		P _{LED}	-	-	2.5	W	(1),(5)
LED Forward	Voltage		V _F	2.8	-	3.2	V	
LED Forward	Current		I _F	-	20	-	mA	
PWM Signal	High	V		3.0	-	3.6	V	(1) (2)
Voltage	Low		V_{PWM}	0	-	0.4	V	(1),(2)
LED Enable	High				-	3.6	V	
Voltage	Low		V_{LED_EN}	0	-	0.4	V	
			D _{DIM} ≥0.1%	100	-	200		
			D _{DIM} ≥0.25%	200	ı	500		
			D _{DIM} ≥0.5%	500	-	1000		
Input DMM Er	aguanav	_	D _{DIM} ≥1%	1000	ı	2000	Hz	(1) (2) (6) (7)
Input PWM Frequency		F _{PWM}	D _{DIM} ≥2.5%	2000	-	5000	114	(1),(2),(6),(7)
			D _{DIM} ≥5%	5000	-	10000		
		D _{DIM} ≥10%		10000	-	20000		
			D _{DIM} ≥15%	20000	-	30000		
LED Life Time			LT	20,000	25,00 0	-	Hours	(1),(8)

Global LCD Panel Exchange Center

Document Name	M101NWWB R3 Customer	M101NWWB R3 Customer Approved Specification					
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00		


Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25 °C, Humidity: 55± 10%RH.

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

Note (3) The specified V_{DD} current and power consumption are measured under the V_{DD} = 3.3 V, F_{V} = 60 Hz condition and white pattern.

Note (4) The figures below is the measuring condition of V_{DD}. Rush current can be measured when T_{RUSH} is 0.5 ms.

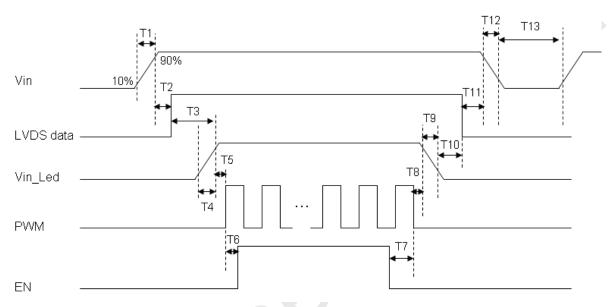
Figure 14 V_{DD} Rising Time

Note (5) The power consumption of LED Driver are under the V_{LED} = 12.0V, Dimming of Max luminance.

Note (6) Although acceptable range as defined, the dimming ratio is not effective at all conditions. The PWM frequency should be fixed and stable for more consistent luminance control at any specific level desired.

Note (7) The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue.

Note (8) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 50% of the minimum value under normal operating condition.


	InfoVision Optoelectroni	cs (Kuns	han) Co.,LTD).	
Document Name	M101NWWB R3 Customer				Page	19 of 2
Document						

Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page	19 of 26
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

4.5 Power ON/OFF Sequence

Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance state or low level when VDD voltage is off.

Figure 15 Power Sequence

Table 8 Power Sequencing Requirements

Parameter	Symbol	Unit	Min	Тур.	Max
VIN Rise Time	T1	ms	0.5		10
VIN Good to Signal Valid	T2	ms	30		90
Signal Valid to Backlight On	Т3	ms	200		
Backlight Power On Time	T4	ms	0.5		
Backlight VDD Good to System PWM On	T5	ms	10		
System PWM ON to Backlight Enable ON	Т6	ms	10		
Backlight Enable Off to System PWM Off	T7	ms	0		
System PWM Off to B/L Power Disable	T8	ms	200		
Backlight Power Off Time	Т9	ms	0.5	10	30
Backlight Off to Signal Disable	T10	ms	200		
Signal Disable to Power Down	T11	ms	0		50
VIN Fall Time	T12	ms	0.5	10	30
Power Off	T13	ms	500		

Document Name	M101NWWB R3 Customer	M101NWWB R3 Customer Approved Specification				
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00	

5.0 **Mechanical Characteristics**

Global LCD Panel Exchange Center

Outline Drawing

Figure 16 Outline Drawing (Front Side)

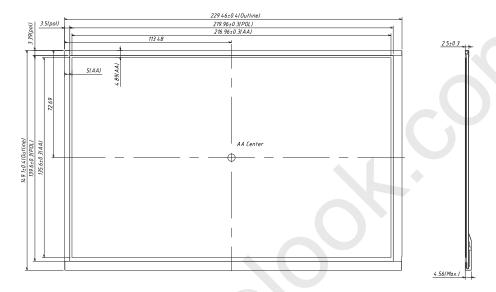
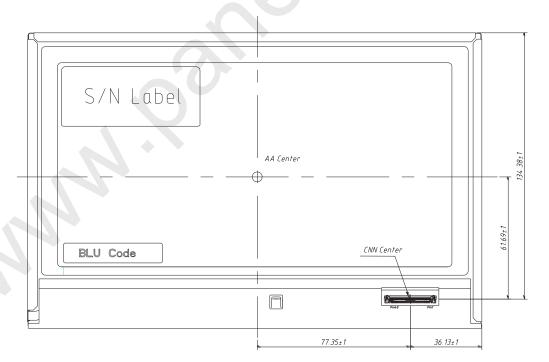



Figure 17 Outline Drawing (Back Side)

Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page 21 of 26	
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

5.2 Dimension Specifications

Table 9 Module Dimension Specifications

Parameter		Тур	Max	Unit
	229.06	229.46	229.86	mm
	148.7	149.1	149.5	mm
Without PCBA	2.2	2.5	2.8	mm
With PCBA	-	-	4.56	mm
	-	-	160	g
		148.7 Without PCBA 2.2 With PCBA -	229.06 229.46 148.7 149.1 Without PCBA 2.2 2.5 With PCBA	229.06 229.46 229.86 148.7 149.1 149.5 Without PCBA 2.2 2.5 2.8 With PCBA - - 4.56

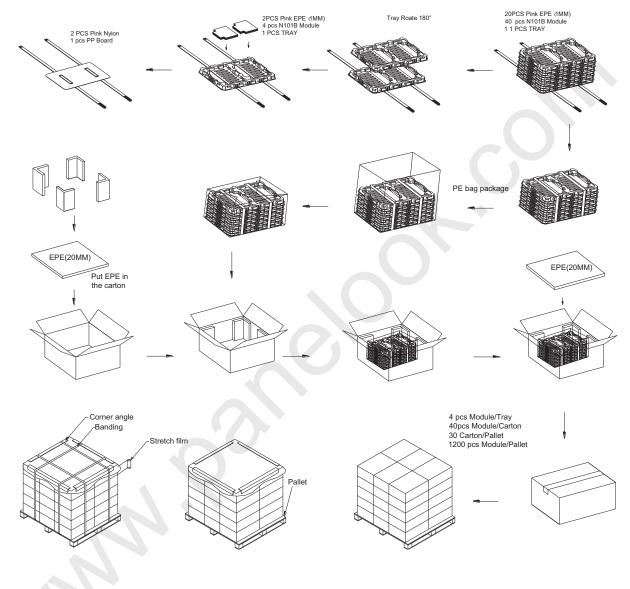
Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page	22 of 26
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

6.0 Reliability Conditions

Item	Package	Test Conditions	Note
High Temperature/High Humidity	Module	T -60% 00% DH 240 hours	
Operating Test	iviodule	T _{gs} =60℃, 90%RH, 240 hours	(1),(2),(3),
High Temperature Operating Test	Module	T _{gs} =70℃, 240 hours	(4)
Low Temperature Operating Test	Module	T _a =-20℃, 240 hours	
High Temperature Storage Test	Module	T _a =80°C, 240 hours	(4) (2) (4)
Low Temperature Storage Test	Module	T _a =-30℃, 240 hours	(1),(3),(4)
Shook Non operating Test	Madula	240G, 2ms, 1time for ±x, ±y, ±z	6
Shock Non-operating Test	Module	directions	(4) (2) (5)
Vibratian Nan aparating Test	Module	1.5G , 10~500 Hz , x、y、z eac	(1),(3),(5)
Vibration Non-operating Test	iviodule	axis/1hour.	
ESD Toot	Madula	Contact ±8KV, 150pF(330Ohm)	(4) (2) (6)
ESD Test	Module	Air ±15KV, 150pF(330Ohm)	(1),(2),(6)

Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test.

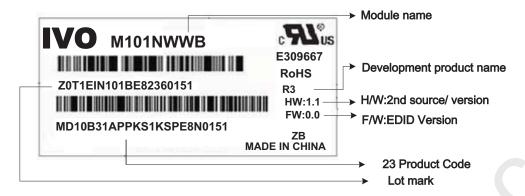
- Note (2) The setting of electrical parameters should follow the typical value before reliability test.
- Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.
- Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm 10\%$ RH. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature.
- Note (5) The module should be fixed firmly in order to avoid twisting and bending.
- Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting.



Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page	23 of 26
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

Package Specification

Global LCD Panel Exchange Center


Figure 19 Packing Method

Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page	24 of 26
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

8.0 Lot Mark

Note: This picture is only an example.

8.1 20 Lot Mark

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
						l													

Code 1,2,4,5,6,7,8,9,10,11,16: IVO internal flow control code.

Code 3: Production Location.

Code 12: Production Year.

Code 13: Production Month.

Code 14,15: Production Day.

Code 17,18,19,20: Serial Number.

8.2 23 Product Barcode

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

Code 1,2: Manufacture District.

Code 3,4,5,6,7: IVO internal module name.

Code 8,9,10,13,16: IVO internal flow control code.

Code 11,12: Cell location Suzhou, China defined as "KS".

Code 14 ,15: Module location Kunshan, China defined as "KS"; Yangzhou, China defined as "YZ"; Shenzhen, China defined as "SE"; Zhuhai, China defined as "ZH"; Suzhou, China defined as "SZ".

Code 17,18,19: Year, Month, Day refer to Note(1), Note(2) and Note(3).

Note (1) Production Year

Year	2006	2007	2008	2009	2010	2011	2012	2013	 2035
Mark	6	7	8	9	Α	В	С	D	 Z

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	Мау.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

Note (3) Production Day: 1~V. Code 20~23: Serial Number.

Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page	25 of 26
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

9.0 General Precaution

9.1 Using Restriction

This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic.

9.2 Operation Precaution

(1)The LCD product should be operated under normal conditions.

Normal conditions are defined as below:

Temperature: 25° C Humidity: $55\pm10\%$

Display pattern: continually changing pattern (Not stationary)

- (2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.)
- (3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating.
- (4) If the absolute maximum rating value was exceeded, it may damage the module.
- (5) Do not adjust the variable resistor located on the module.
- (6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference.
- (7) Image sticking may occur when the module displayed the same pattern for long time.
- (8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence"
- (9) Ultra-violet ray filter is necessary for outdoor operation.

9.3 Mounting Precaution

- (1) All the operators should be electrically grounded and with Ion-blown equipment turning on when mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly.
- (2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable.
- (3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly.
- (4) It is obvious that you should adopt radiation structure to satisfy the temperature specification.
- (5) So as to acquire higher luminance, the cable between the back light and the inverter of the power supply should be connected directly with a minimize length.
- (6) It should be attached to the system tightly by using all holes for mounting, when the module is

All rights strictly reserved reproduction or issue to third parties in any form what ever is not permitted without written authority from the proprietor.

Document Name	M101NWWB R3 Customer	Approved Specificat	ion	Page	26 of 26
Document No.	A-M101NWWB-R3-413-02	Made/Revised Date	2018/05/29	Ver.	00

assembled. Be careful not to apply uneven force to the module, especially to the PCB on the back.

- (7) A transparent protective film needs to be attached to the surface of the module.
- (8) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In addition, don't touch the pin exposed with bare hands directly.
- (9) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty.
- (10) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color.
- (11) Desirable cleaners are IPA (Isopropyl Alcohol) or hexane. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (12) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module.

9.4 Handling Precaution

- (1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with Ion-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area.
- (2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling.
- (3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly.

9.5 Storage Precaution

When storing modules as spares for long time, the following precautions must be executed.

- (1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality.

9.6 Others

When disposing LCD module, obey the local environmental regulations.