

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	1/31
Document No.		Issue date	2014/03/24	Revision	00

Product Information

To:

Product Name: M104GNX1 R1

Document Issue Date: 2014/03/24

Customer				
<u>SIGNATURE</u>				
Please return 1 copy for your confirmation				
with your signature and comments.				

InfoVision Optoelectronics					
70	SIGNATURE				
	QA				
	PREPARED BY FAE				

Note: 1. Please contact IVO Corp. before designing your product based on this product.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein.

IVO

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	2/31
Document No.		Issue date 2014/03/24			

Revision	Date	Page	Old Description	New Description	Remark
00	2014/03/24	all		First issue.	
				*	
			<u> </u>		

Document Title	M104GNX1 R1 Tentative Product Information				3/31
Document No.		Issue date	2014/03/24	Revision	00

CONTENTS

1.0	General Descriptions	4
2.0	Absolute Maximum Ratings	6
3.0	Pixel Format Image	7
4.0	Optical Characteristics	8
5.0	Backlight Characteristics	11
6.0	Electrical Characteristics	13
7.0	Interface Timings	19
8.0	Power Consumption	20
9.0	Power ON/OFF Sequence	21
10.0	Mechanical Characteristics	23
11.0	Package Specification	26
	Lot Mark	
14.0	General Precaution	30

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	4/31
Document No.		Issue date	2014/03/24	Revision	00

1.0 General Descriptions

1.1 Introduction

The M104GNX1 is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. It is composed of a TFT LCD panel, a timing controller, voltage reference, common voltage, column driver, and row driver circuit. This TFT LCD has a 10.4-inch diagonally measured active display area with XGA resolution (1,024 horizontal by 768 vertical pixels array).

1.2 Features

- 10.4" TFT-LCD Panel
- LED Backlight System
- Supported XGA Resolution
- Compatible with RoHS Standard

1.3 Product Summary

1.3 Product Summary		
Items	Specifications	Unit
Screen Diagonal	10.4	inch
Active Area (H x V)	211.2 x 158.4	mm
Number of Pixels (H x V)	1,024 x 768	-
Pixel Pitch (H x V)	0.20625 x 0.20625	mm
Pixel Arrangement	R.G.B. Vertical Stripe	-
Display Mode	Normally White	-
White Luminance	(350) (Typ)	cd /m ²
Contrast Ratio	(900) (Typ.)	-
Response Time	(16) (Typ.)	ms
Input Voltage	3.3 (Typ.)	V
Power Consumption	(3.72)(Max)	W
Weight	(290) (Max)	g
Outline Dimension (H x V x D)	(236.0) (Typ.) x 176.9(Typ.) x 5.7 (Typ.)	mm
Electrical Interface (Logic)	LVDS	-
Support Color	262k/16.7M	-
Optimum Viewing Direction	6 o'colok(Gray scale inversion direction)	-
Surface Treatment	Anti-Glare	-



Document Title	M104GNX1 R1 Tentative Product Information			Page No.	5/31
Document No.		Issue date	2014/03/24	Revision	00

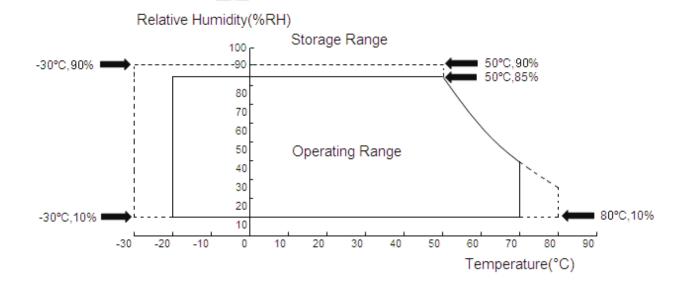
1.4 Functional Block Diagram

Figure 1 shows the functional block diagram of the LCD module.

Figure 1 Block Diagram

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	6/31
Document No.		Issue date	2014/03/24	Revision	00

2.0 Absolute Maximum Ratings


Table 1 Absolute Ratings of Environment

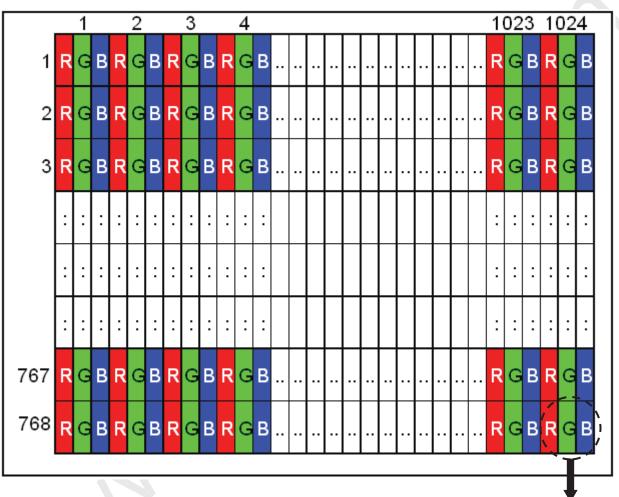
Item	Symbol	Min.	Max.	Unit	Conditions	
Logic Supply Voltage	V _{DD}	(-0.3)	(3.96)	V	(1)	
LED Driver Voltage	VLED	(-0.3)	(20)	V	(1)	
Operating Temperature	TOP	-20	70	$^{\circ}$ C	(1) (2) (3) (4)	
Operating Humidity	HOP	10	85	%RH	-	
Storage Temperature	TST	-30	80	$^{\circ}$ C	-	
Storage Humidity	HST	10	90	%RH	-	

- Note (1): Humidity: 85%RH Max. (T<=40°C) Note static electricity.

 Maximum wet bulb temperature at 39°C or less. (T>40°C) No condensation.
- Note (2): There is a possibility of causing deterioration in the irregularity and others of the screen and the display fineness though the liquid crystal module doesn't arrive at destruction when using it at $60~70^{\circ}$ C or $-20~0^{\circ}$ C.
- Note (3): There is a possibility of causing the fineness deterioration by the prolonged use in the (high temperature) humidity environment (60% or more).
- Note (4): In the operating temperature item, the low temperature side is the ambient temperature regulations. The high temperature side is the panel surface temperature regulations.

Figure 2 Absolute Ratings of Environment of the LCD Module

All rights strictly reserved reproduction or issue to third parties in any form what ever is not permitted without written authority from the proprietor.



Document Title	M104GNX1 R1 Tentative Product Information			Page No.	7/31
Document No.		Issue date	2014/03/24	Revision	00

3.0 Pixel Format Image

Figure 3 shows the relationship of the input signals and LCD pixel format image.

Figure 3 Pixel Format

R Dot +G Dot +B Dot=1 Pixel

IVO

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	M104GNX1 R1 Tentative Product Information		Page No.	8/31	
Document No.		Issue date	2014/03/24	Revision	00

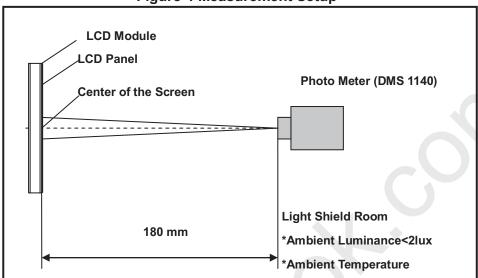
4.0 Optical Characteristics

The optical characteristics are measured under stable conditions as following notes.

Table 2 Optical Characteristics

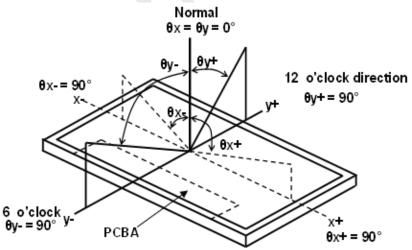
Item	Conditions		Min.	Тур.	Max.	Unit	Note
	Llawimontal	θ ×+	(70)	(75)	-		
Viewing Angle	Horizontal	θ _{x-}	(70)	(75)	-	dograa	(1) (2) (2)
(CR>10)	Vertical	θ _{y+}	(70)	(75)	-	degree	(1),(2),(3)
	vertical	Ө _{у-}	(70)	(75)	-		
Contrast Ratio	Center		(720)	(900)	-	-	(1),(2),(4)
Response Time	Rising + Fallin	g	-	(16)	TBD	ms	(1),(2),(5)
	Red x			TBD		-	
	Red y			TBD		-	
Color	Green x Green y Blue x		Тур.	TBD	Typ. +0.03	-	
Color			-0.03	TBD		-	(1),(2),(3)
Chromaticity				TBD		-	θx=θy=0°
(CIE1931)	Blue y			TBD		-	
	White x White y		(0.260)	(0.310)	(0.360)	-	
			(0.280)	(0.330)	(0.380)	-	
NTSC	-	(0)	(48)	(50)	-	%	(1),(2),(3) $\theta x = \theta y = 0^{\circ}$
White Luminance	Center		(300)	(350)	-	cd/m^2	(1),(2),(6)
Luminance Uniformity	9 Points		(75)	(80)	-	%	(1),(2),(7)

Note (1) Measurement Setup:


The LCD module should be stabilized at given temperature (25°C) for 15 minutes to Avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	9/31
Document No.		Issue date	2014/03/24	Revision	00

Figure 4 Measurement Setup


Note (2) The LED input parameter setting as:

V_LED: 12V (±0.1V)

PWM_LED: duty 100 %

Note (3) Definition of Viewing Angle

Figure 5 Definition of Viewing Angle

Note (4) Definition Of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression Contrast Ratio (CR) = L255 / L0

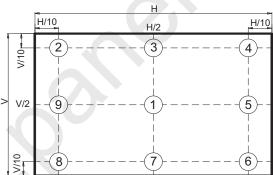
L255: Luminance of gray level 255, L0: Luminance of gray level 0

Note (5) Definition Of Response Time (TR, TF)

Figure 6 Definition of Response Time

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	10/31
Document No.		Issue date	2014/03/24	Revision	00

Note (6) Definition Of Luminance White


Measure the luminance of gray level 255 at center point (Ref.: Active Area)

Note (7) Definition Of Luminance Uniformity (Ref.: Active Area)

Measure the luminance of gray level 255 at 9 points.

UNF(9pts) =
$$\frac{\text{Min}(L1, L2, \cdots L9)}{\text{Max}(L1, L2, \cdots L9)}$$

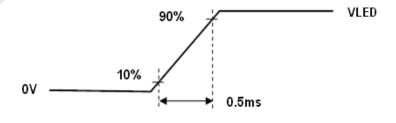
Figure 8 Measurement Locations Of 9 Points

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	11/31
Document No.		Issue date	2014/03/24	Revision	00

5.0 Backlight Characteristics

5.1 Parameter Guideline Of LED Backlight

Table 3 Parameter Guideline for LED Backlight


· · · · · · · · · · · · · · · · · · ·							
Item	Symb	ol	Min.	Тур.	Max.	Units	Note
LED Input Voltage	V_LED		10.8	12	12.6	V	(2),(3)
LED Power Consumption	P_LED	P_LED		1	(2.88)	W	(2),(3)
LED Forward Voltage	V _F		2.8	3.2	3.6	V	
LED Forward Current	I _F		-	20	30	mA	
D)4/4.4 C: 1.7 / //	V _{PWM_EN}	High	4.5	5	5.5	V	(2)
PWM Signal Voltage		Low	0	-	0.4		
LED Frable Voltage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	High	2.0	5	5.5	\/	
LED Enable Voltage	$V_{LED_{EN}}$	Low	0		0.4	V	
Input PWM Frequency	FPWM	•	100	-	1K	Hz	
LED Life Time	LT		30,000	-	-	Hours	(1)(2)
Duty Ratio	PWM		5	-	100	%	(2)

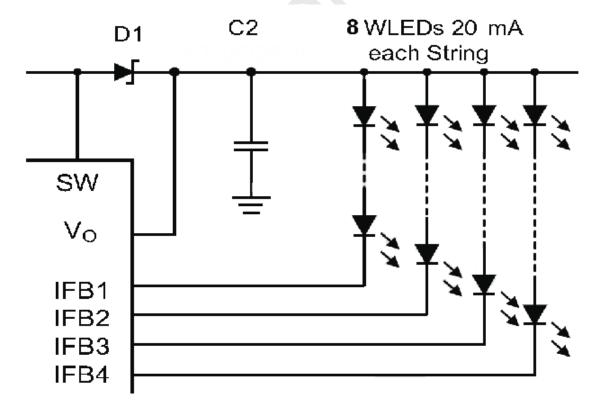
Note (1) The LED life time define as the estimated time to 50% degradation of initial luminous.

Note (2) Operating temperature 25°C, humidity 55%RH.

Note (3) A higher LED power supply voltage will result in better power efficiency. Keep the V_{LED} between 12V and 12.6V is strongly recommended.

Figure 8 LED Rush Current Measure Condition

Document Title	M104GNX1 R1 Tentative Product Information		Page No.	12/31	
Document No.		Issue date	2014/03/24	Revision	00


Table 4 Backlight Connector Type

Item	Description	
Туре	MSB24038P5A (Manufacture by STM)	
Mating Receptacle / Type (Reference)	P24038P5	

Table 5 Backlight Connector Pin Assignment

Pin No.	Symbol	Signal name
1	VCC	12V
2	GND	GND
3	ON/OFF	5V-ON,0V-OFF
4	Dimming	PWM Dimming or Analog Dimming
5	NC	NC

Figure 9 LED Circuit Diagram

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	13/31
Document No.		Issue date	2014/03/24	Revision	00

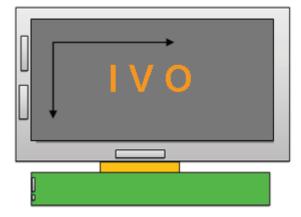
6.0 Electrical Characteristics

6.1 Interface Connector

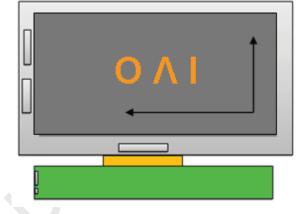
Table 6 Signal Connector Type

Item	Description
Type/Part Number	MSB24013P20HA (Manufacture by STM)
Mating Receptacle / Type (Reference) P24013P20 or compatible	

Table 7 Signal Connector Pin Assignment


Pin No.	Symbol	Description	Note
1	VDD	Power Supply, 3.3V (typical)	-
2	VDD	Power Supply, 3.3V (typical)	-
3	VSS	Ground	-
4	REV	Reverse Scan selection {High:2.5(min), 3.3(typ),3.6(max); Low: 0.5(max)}	(1)
5	Rin1-	-LVDS differential data input (R0-R5,G0)	-
6	Rin1+	+LVDS differential data input (R0-R5,G0)	-
7	VSS	Ground	-
8	Rin2-	-LVDS differential data input (G1-G5,B0-B1)	-
9	Rin2+	+LVDS differential data input (G1-G5,B0-B1)	-
10	VSS	Ground	-
11	Rin3-	-LVDS differential data input (B2-B5,HS,VS,DE)	-
12	Rin3+	+LVDS differential data input (B2-B5,HS,VS,DE)	-
13	VSS	Ground	-
14	CIkIN-	-LVDS differential clock input	-
15	ClkIN+	+LVDS differential clock input	-
16	GND	Ground	-
17	Rin4-	-LVDS differential data input (R6-R7,G6-G7,B6-B7)	-
18	Rin4+	+VDS differential data input (R6-R7,G6-G7,B6-B7)	-
19	SEL68	6/8 bits LVDS data input selection(H:8bits L/NC:6bits)	-
20	Bist	Internal use	-

Note (1) REV = LOW/NC



Document Title	M104GNX1 R1 Tentative Pr	Page No.	14/31		
Document No.		Issue date	2014/03/24	Revision	00

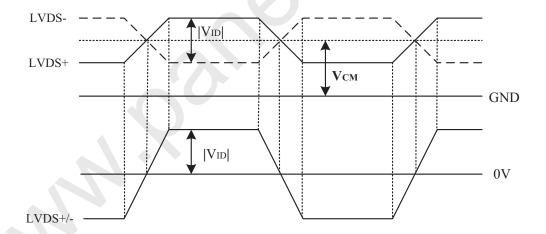
REV = High

Document Title	M104GNX1 R1 Tentative Pr	Page No.	15/31		
Document No.		Issue date	2014/03/24	Revision	00

6.2 LVDS Receiver

6.2.1 Signal Electrical Characteristics For LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.


Table 8 LVDS Receiver Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	Vth	ı	-	+100	mV	V _{CM} =+1.2V
Differential Input Low Threshold	VtI	-100	-	-	mV	V _{CM} =+1.2V
Magnitude Differential Input	V _{ID}	200	-	600	mV	-
Common Mode Voltage	V_{CM}	1.0	1.2	1.4	V	Vth – Vtl=200 mV
Common Mode Voltage Offset	ΔV_{CM}	-50	-	+50	mV	Vth – Vtl=200 mV

Note: (1) Input signals shall be low or Hi- resistance state when VDD is off.

(2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

Figure 10 Voltage Definitions

Document Title	M104GNX1 R1 Tentative Pr	Page No.	16/31		
Document No.		Issue date	2014/03/24	Revision	00

Figure 11 Measurement System

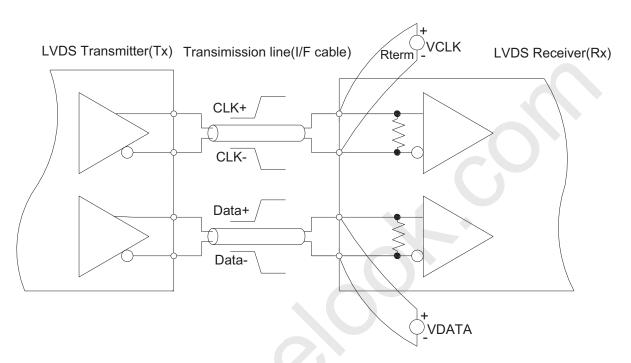
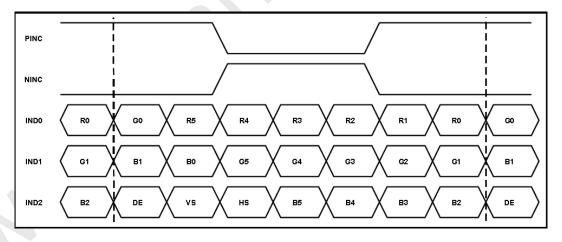
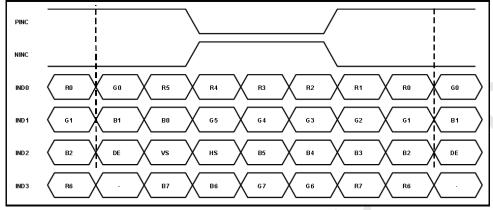
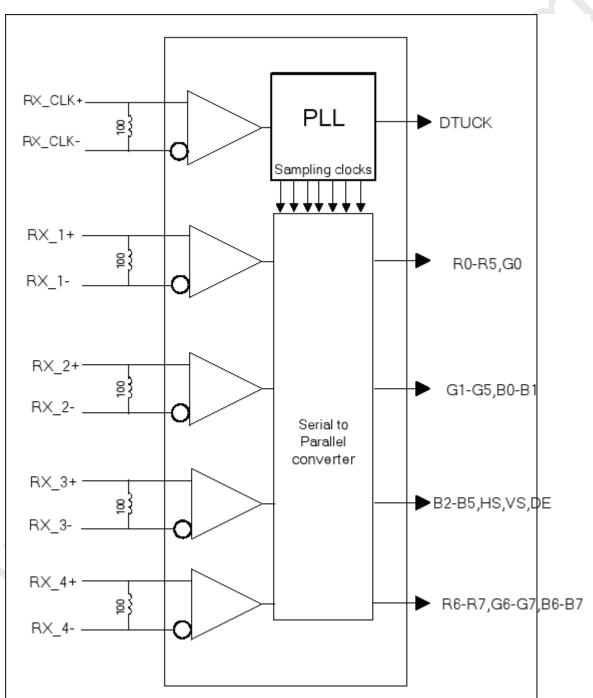



Figure 12 Data Mapping (6 Bit)



Document Title	M104GNX1 R1 Tentative Pr	Page No.	17/31		
Document No.		Issue date	2014/03/24	Revision	00

Figure 13 Data Mapping (8 Bit)



Document Title	M104GNX1 R1 Tentative Product Information				18/31
Document No.		Issue date	2014/03/24	Revision	00

6.2.2 LVDS Receiver Internal Circuit

Figure 14 LVDS Receiver Internal Circuit shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link.

Figure 14 LVDS Receiver Internal Circuit

Document Title	M104GNX1 R1 Tentative Pro	Page No.	19/31		
Document No.		Issue date	2014/03/24	Revision	00

7.0 Interface Timings

7.1 Timing Characteristics

Synchronization method should be DE mode.

Table 9 Interface Timings

Parameter	Symbol	Unit	Min.	Тур.	Max.
LVDS Clock Frequency	Fclk	MHz	(52)	(65)	(71)
H Total Time	HT	Clocks	(1,114)	(1,344)	(1,400)
H Active Time	HA	Clocks	1,024	1,024	1,024
H Blanking Time	HBL	Clocks	(90)	(320)	(376)
V Total Time	VT	Lines	(778)	(806)	(845)
V Active Time	VA	Lines	768	768	768
V Blanking Time	VBL	Lines	(10)	(38)	(77)
Frame Rate	Vsync	Hz	55	60	65

Note: H Blanking Time and V Blanking Time can not be changed at every frame.

Document Title	M104GNX1 R1 Tentative Pro	Page No.	20/31		
Document No.		Issue date	2014/03/24	Revision	00

8.0 **Power Consumption**

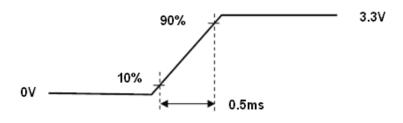
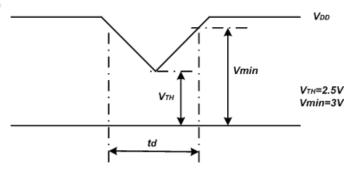

Input power specifications are as follows.

Table 10 Power Consumption

Item		Symbol	Min.	Тур.	Max.	Units	Note
LCD Drive Vol	tage (Logic)	VDD	3.0	3.3	3.6	V	(2), (4)
VDD Current	Black Pattern	IDD	-	TBD	(0.25)	Α	
VDD Power	Black Pattern	PDD			(0.94)	W	(3),(4)
Consumption	Diack Pattern	PDD	-	-	(0.84)	VV	
Rush Current		Irush	-	-	1.5	Α	(1),(4)
Allowable Logic/LCD		VDDrp			(200)	m)/	(4)
Drive Ripple V	Drive Ripple Voltage		-	-	(200)	mV	(4)

Note (1) Measure Condition


Figure 15 VDD Rising Time

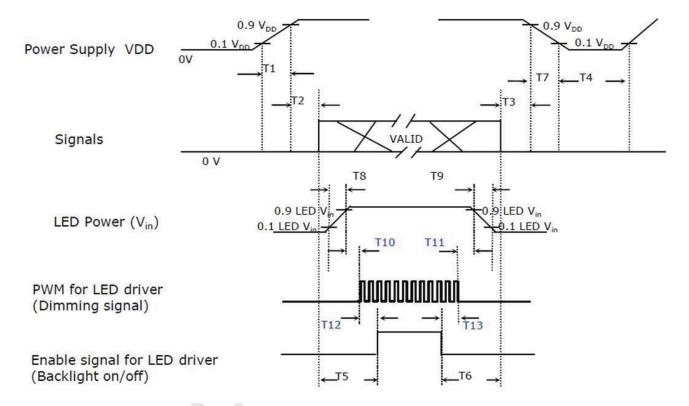
Note (2) VDD Power Dip Condition

If VTH<VDD≤Vmin, then td≤10ms; when the voltage return to normal our panel must revive automatically.

Figure 16 VDD Power Dip

Note (3) Frame Rate=60Hz, VDD=3.3V,DC Current.

Note (4) Operating temperature 25 °C, humidity 55%RH.



Document Title	M104GNX1 R1 Tentative Pro	Page No.	21/31		
Document No.		Issue date	2014/03/24	Revision	00

9.0 Power ON/OFF Sequence

VDD power on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance state or low level when VDD is off.

Figure 17 Power Sequence

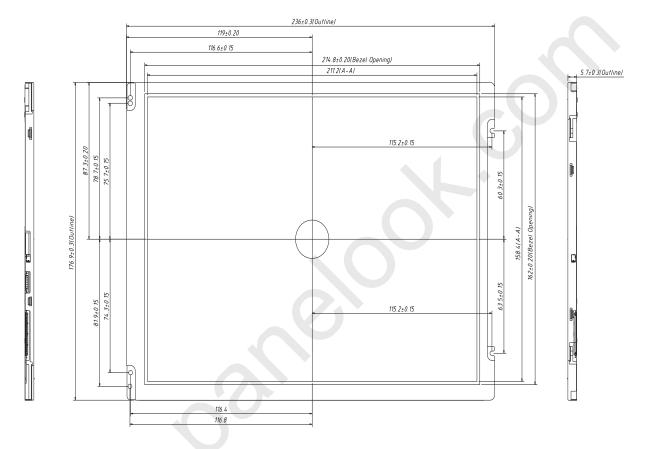
IVO

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	M104GNX1 R1 Tentative Product Information				22/31
Document No.		Issue date	2014/03/24	Revision	00

Table 10 Power Sequencing Requirements

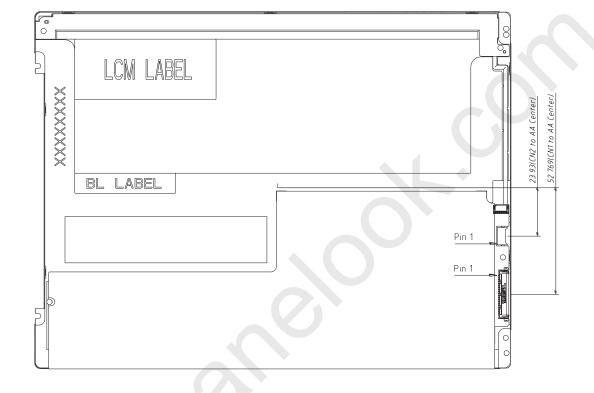
Power ON/OFF Sequence							
Items	Symbol	MIN	TYP	MAX	Unit		
VDD rising time from 10% to 90%	T1	0.5	-	10	ms		
Delay from VDD to valid data at power ON	T2	30	-	50	ms		
Delay from valid data OFF to VDD OFF at power OFF	Т3	0	-	50	ms		
VDD OFF time for windows restart	T4	500	-	-	ms		
Delay from valid data to B/L enable at power ON	T5	200	-	-	ms		
Delay from valid data off to B/L disable at power Off	T6	200	-	-	ms		
VDD falling time from 90% to 10%	T7	0.5	-	10	ms		
LED Vin rising time from 10% to 90%	Т8	0.5	-	10	ms		
LED Vin falling time from 90% to 10%	Т9	0.5	-	10	ms		
Delay from LED driver Vin rising time 90% to PWM ON	T10	0	-	-	ms		
Delay from PWM Off to LED driver Vin falling time 10%, Must keep rule	T11	0	-	-	ms		
Delay from PWM ON to B/L Enable ON,Must keep rule	T12	0	-	-	ms		
Delay from B/LEnable Off to PWM Off	T13	0	_	_	ms		



Document Title	M104GNX1 R1 Tentative Product Information			Page No.	23/31
Document No.		Issue date	2014/03/24	Revision	00

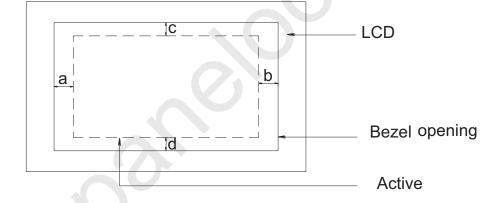
10.0 Mechanical Characteristics

10.1 Outline Drawing


Figure 18 Reference Outline Drawing (Front Side)

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	24/31
Document No.		Issue date	2014/03/24	Revision	00

Figure 19 Reference Outline Drawing (Back Side)


Document Title	M104GNX1 R1 Tentative Product Information				25/31
Document No.		Issue date	2014/03/24	Revision	00

10.2 Dimension Specifications

Table 11 Module Dimension Specifications

Item	Min.	Тур.	Max.	Units
Width	(235.7)	(236.0)	(236.3)	mm
Height	(176.6)	(176.9)	(177.2)	mm
Thickness	(5.4)	(5.7)	(6.0)	mm
Weight	-	-	(290)	g
BM: a-b & c-d		≤1.0		mm

Figure 20 BM Area

Document Title	M104GNX1 R1 Tentative Product Information				26/31
Document No.		Issue date	2014/03/24	Revision	00

11.0 Package Specification

Figure 21 Packing Method

TBD

IVO

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	M104GNX1 R1 Tentative Product Information				27/31
Document No.		Issue date	2014/03/24	Revision	00

12.0 Reliability Conditions

Item		Package	Test Co	onditions	Note						
	emperature on Test	Module	70°ℂ , 240hrs		1,4,5,6,7,8						
	mperature ng Test	Module	-20°ℂ, 240hrs		-20°C, 240hrs		1,4,5,6,7,8				
	emp./High sy Operating	Module	50℃, 85%, 240hrs		50℃, 85%, 240hrs		50℃, 85%, 240hrs		1,4,5,6,7,8		
	emp./High ty Storage Test	Module	50℃, 90%, 240hrs	11-	1,5,6,7,8						
	ıl Shock eration Test	Module	-30°C~80°C,1hr/each c 100cycles	ycle,	1,5,6,7,8						
Shock		Module	3 shock in each direction Peak acceleration:981m/s2 Half Sine Wave; 6ms		Peak acceleration:981m/s2		Peak acceleration:981m/s2		Peak acceleration:981m/s2		1,7,8
Vibratio	n	Module	1.5G , 10~500 Hz , x、y、z each axis/1h		1.5G , 10~500 Hz , x、y、z each axis/1h		1,7,8				
Drop Te	est	With package	(65)cm, 1corner,3 arris,6 side		(65)cm, 1corner,3 arris,6 side		1,8				
Vibratio	n Test	With package	1.5G , 10~500 Hz , x、y、z each axis/1h		1,8						
	aparating		contact	± 8 KV							
ESD	operating	Module	air	± 15 KV	2,4,5,7,8						
Test		Module	contact	± 10 KV	2,4,3,7,0						
	non-operating		air	± 20 KV							
Image \$	Sticking test	Module	5*7 chessboard pattern: 1. Normal temperature(25°C):50% Grayscale,2h/10s,4h/10s,8h/2min,24h/5min ND8% OK 2. High temperature(70°C): 50% Grayscale ,2h/10s,4h/10s,8h/2min,24h/10min ND8% OK		3,4,6,7,8						

Note:

Document Title	M104GNX1 R1 Tentative Product Information				28/31
Document No.		Issue date	2014/03/24	Revision	00

- 1. There is no function defect and occurrence of any new defective shall not be allowed.
- In case of malfunction defect caused by ESD damage. If it would be recovered to normal state after resetting, it would be judge as pass.
- 25°C: Image Sticking is not visible through 8% ND filter after 5 min with pattern L127.
 70°C: Image Sticking is not visible through 8% ND filter after 10 min with pattern L127.
- 4. In Operating test, the B/L voltage and current must be in spec.
- 5. All the judgments are under normal temperature and the sample need to be static more than 2 hours in the normal temperature before judge.
- 6. During measurement, the condensation water or remains shall not be allowed.
- 7. The minimum sample quantity of test is 3pcs.
- 8. There is no display function fail issue occurred, all the cosmetic specification is judged before the reliability stress.

IVO

InfoVision Optoelectronics (Kunshan) Co.,LTD.

Document Title	M104GNX1 R1 Tentative Product Information				29/31
Document No.		Issue date	2014/03/24	Revision	00

13.0 Lot Mark TBD

Document Title	M104GNX1 R1 Tentative Product Information				30/31
Document No.		Issue date	2014/03/24	Revision	00

14.0 General Precaution

14.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

14.2 Handling Precaution

- (1) Please mount LCD module by using mounting holes arranged in four corners tightly.
- (2) Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. IVO does not warrant the module, if customers disassemble or modify the module.
- (3) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid Crystal, and do not contact liquid crystal with skin. If liquid crystal contacts mouth or eyes, rinse out with water immediately. If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and Rinse thoroughly with water.
- (4) Disconnect power supply before handling LCD module
- (5) Refrain from strong mechanical shock and /or any force to the module.
- (6) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature; etc otherwise LCD module may be damaged. It's recommended employing protection circuit for power supply.
- (7) Do not touch, push or rub the polarizer with anything harder than HB pencil lead. Use fingerstalls of soft gloves in order to keep clean display quality, when Persons handle the LCD module for incoming inspection or assembly.
- (8) When the surface is dusty, please wipe gently with absorbent cotton or other soft Material. When cleaning the adhesives, please use absorbent cotton wetted with a little Petroleum benzene or other adequate solvent.
- (9) Wipe off saliva or water drops as soon as possible. If saliva or water drops Contact with polarizer for a long time, they may causes deformation or color Fading.
- (10) Protection film must remove very slowly from the surface of LCD module to Prevent from electrostatic occurrence.
- (11) Because LCD module uses CMOS-IC on circuit board and TFT-LCD panel, it is Very weak to electrostatic discharge, Please be careful with electrostatic Discharge .Persons who handle the module should be grounded through adequate methods.
- (12) Do not adjust the variable resistor located on the module.

14.3 Storage Precaution

- (1) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (2) The module shall not be exposed under strong light such as direct sunlight. Otherwise, Display characteristics may be changed.
- (3) The module should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light in storage.

14.4 Operation Precaution

- (1) Do not connect or disconnect the module in the "Power On" condition.
- (2) Power supply should always be turned on/off by "Power on/off sequence"
- (3) Module has high frequency circuits. Sufficient suppression to the electromagnetic

Document Title	M104GNX1 R1 Tentative Product Information			Page No.	31/31
Document No.		Issue date	2014/03/24	Revision	00

methods may be important to minimize the interference.

(4) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

14.5 Others

- (1) Ultra-violet ray filter is necessary for outdoor operation.
- (2) Avoid condensation of water which may result in improper operation or disconnection of electrode.
- (3) If the module keeps displaying the same pattern for a long period of time, the image may be "sticked" to the screen.
- (4) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.

14.6 Disposal

When disposing LCD module, obey the local environmental regulations.