

Tentative Specification
☐ Preliminary Specification
Approval Specification

Doc. Number:

MODEL NO.: N080ICE SUFFIX: GB1 (C2)

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note :	
Please return 1 copy for your con signature and comments.	firmation with your

Approved By	Checked By	Prepared By

Version 6.0 31 December 2013 1 / 43

CONTENTS

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 GENERAL SPECIFICATIONS	4
2. MECHANICAL SPECIFICATIONS	4
2.1 CONNECTOR TYPE	4
3. ABSOLUTE MAXIMUM RATINGS	5
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	
3.2 ELECTRICAL ABSOLUTE RATINGS	5
3.2.1 TFT LCD MODULE	5
4. ELECTRICAL SPECIFICATIONS	6
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INTERFACE CONNECTIONS	
4.3 ELECTRICAL CHARACTERISTICS	8
4.3.1 LCD ELETRONICS SPECIFICATION	8
4.3.2 LED CONVERTER SPECIFICATION	9
4.3.3 BACKLIGHT UNIT	9
4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS	10
4.4.1 DC Electrical Characteristic	10
4.4.2 AC Electrical Characteristics	12
4.5 MIPI interface (Mobile Industry Processing Interface)	18
4.5.1 MIPI Lane Configuration	18
4.6 POWER ON/OFF SEQUENCE	19
5. OPTICAL CHARACTERISTICS	21
5.1 TEST CONDITIONS	21
5.2 OPTICAL SPECIFICATIONS	21
6. RELIABILITY TEST ITEM	25
7. PACKING	26
7.1 MODULE LABEL	26
7.2 CARTON	27
7.3 PALLET	28
7.4 Un-Packing	29
Appendix I. OUTLINE DRAWING (Label position will be updated as requirement)	30
Appendix II. SYSTEM COVER DESIGN GUIDANCE	34
Appendix III. NT35521 REGISTER SETTING	38

Version 6.0 31 December 2013 2 / 43

REVISION HISTORY

Version	Date	Page	Description
0.0	Sep, 12, 2013	All	Spec Ver.0.0 was first issued.
1.0	Oct, 25, 2013	26~37	Add Packing ,System cover design guidance
2.0	Nov, 04, 2013	31~34	Update 2D drawing
3.0	Nov, 13, 2013	25	Update Image sticking spec.
4.0	Nov, 18, 2013	19~20	Update Power Sequence.
5.0	Dec, 03, 2013	4,25	Update Module size V ,Delete Image sticking spec.
6.0	Dec, 18, 2013	31~33 38~43	Update OUTLINE DRAWING Add NT35521 REGISTER SETTING

Version 6.0 31 December 2013 3 / 43

群創光電 PRODUCT SPECIFICATION

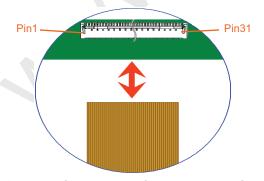
1. GENERAL DESCRIPTION

1.1 OVERVIEW

N080ICE-GB1 is a 8" (8" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 31 pins MIPI interface. This module supports 800 x 1280 WXGA mode.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	8" diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 1280	pixel	_
Pixel Pitch	0.13455 (H) x 0.13455 (V)	mm	_
Pixel Arrangement	RGB vertical stripe		-
Display Colors	16,777,216 (8bit color depth)	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating(3H), Low-Reflection	-	-
Luminance, White	350	Cd/m2	
Power Consumption	Total 1.5 W (Max.) (panel 0.3 W (Max.), BL 1.	2W (Max.))	(1)


Note(1) The specified power consumption (with converter efficiency) is under the conditions at VCI = 3.3 V, VDDI= 1.8V, fv = 60 Hz, Brightness = 350nits, $I_{F LED}$ = 20mA and Ta = 25 ± 2 °C, whereas white pattern is displayed.

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	120.15	120.65	121.15	mm	
Module Size	Vertical (V)	187.14	187.64	188.14	mm	(1)
Module Oize	Thickness (T)			2.9 (w/o PCBA) 5.1 (w/ PCBA)	mm	(1)
CF Polarizer	Horizontal	109.54	110.04	110.54	mm	
CFFGianzei	Vertical	174.12	174.62	175.12	mm	
A - 45 A	Horizontal		107.64		mm	
Active Area	Vertical		172.224		mm	
V	Veight	-	-	99	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 CONNECTOR TYPE

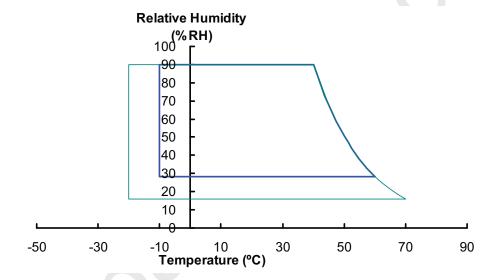
Please refer Appendix Outline Drawing for detail design.

Connector Part No.: Panasonic AYF333135

4 / 43 Version 6.0 31 December 2013

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

3. ABSOLUTE MAXIMUM RATINGS


3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Svmbol	Va	Unit	Note		
item	Syllibol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+70	°C	(1)	
Operating Ambient Temperature	T _{OP}	-10	+60	°C	(1), (2)	

Note(1) (a) 90 %RH Max. (Ta <= 40 °C).

- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

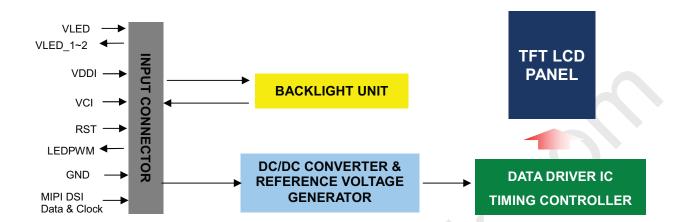
Note(2) The temperature of panel surface should be -10 °C min. and 70 °C max.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
Rem	Cymbol	Min.	Max.	Onic		
Power Supply Voltage	VCI	-0.3	+5.0	V	(1)	
Power Supply Voltage	VDDI	-0.3	+2.0	V	(1)	

Note(1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".


Version 6.0 31 December 2013 5 / 43

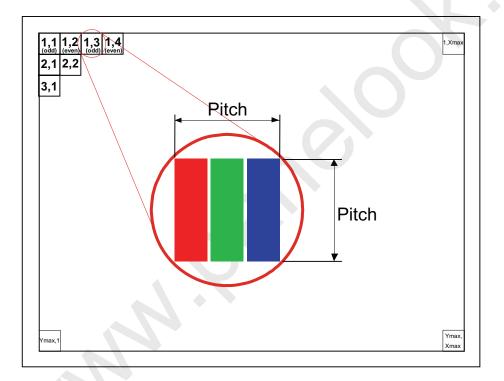
4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

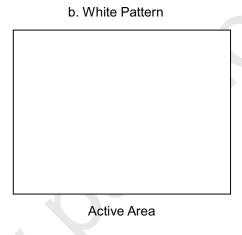
IN ASSIGNMENT				
Pin	Symbol	I/O	Description	Remark
1	GND	Р	Ground	
2	GND	Р	Ground	
3	GND	Р	Ground	
4	D_0N	I	MIPI differential data0 input (Negative)	
5	RST	I	Device reset signal	
6	D0_P	I	MIPI differential data0 input (Positive)	
7	VCI	Р	3.3V input	
8	GND	Р	Ground	
9	VCI	Р	3.3V input	
10	D1_N	1	MIPI differential data1 input (Negative)	
11	NC(MTP)	Р	No connection, please keep it floating	
12	D1_P	I	MIPI differential data1 input (Positive)	
13	VDDI	Р	1.8V input	
14	GND	Р	Ground	
15	VDDI	Р	1.8V input	
16	CLK_N	I	MIPI differential clock input (Negative)	
17	LEDPWM	0	PWM control signal for LED driver (CABC)	
18	CLK_P	I	MIPI differential clock input (Positive)	
19	VLED	Р	Anode for light bar	
20	GND	Р	Ground	
21	VLED	Р	Anode for light bar	


Version 6.0 31 December 2013 6 / 43

22	D2_N	I	MIPI differential data2 input (Negative)	
23	ID		Ground	
24	D2_P	I	MIPI differential data2 input (Positive)	
25	LED1	Р	Cathode for light bar	
26	GND	Р	Ground	
27	LED2	Р	Cathode for light bar	
28	D3_N	- 1	MIPI differential data3 input (Negative)	
29	GND	Р	Ground	
30	D3_P	_	MIPI differential data3 input (Positive)	
31	GND	Р	Ground	

- Note (1) The first pixel is odd as shown in the following figure.
- Note (2) Normal operation/BIST pattern selection. (Control by MIPI LP Command)

Version 6.0 31 December 2013 7 / 43


4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Item		Symbol		Values	Unit	Remark	
		Syllibol	Min.	Тур.	Max.	Oilit	Kemark
Device aventureltana		VCI	3.0	3.3	3.6	V	
Fower supply v	Power supply voltage		1.7	1.8	1.9	V	
VDDI High level inp	VDDI High level input voltage		0.7 VDDI	-	VDDI	V	For I/O circuit
VDDI Low level inp	VDDI Low level input voltage		0	-	0.3 VDDI	V	For I/O circuit
Power Supply	Power Supply		-	50	60	mA	Note (2)
Current	White	I _{VDDI}	-	45	55	mA	Note (2)
Power Consur	nption	PLCD	-	-	300	mW	Note (3)

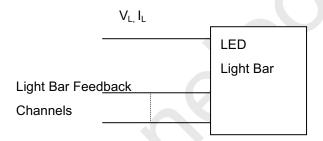
Note(1) The ambient temperature is Ta = 25 ± 2 °C.

Note(2) The specified power supply current is under the conditions at VCI = 3.3 V, VDDI = 1.8 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check White pattern below is displayed.

Note(3) The power consumption is specified at the white pattern with the maximum current.

Version 6.0 31 December 2013 8 / 43

4.3.2 LED CONVERTER SPECIFICATION

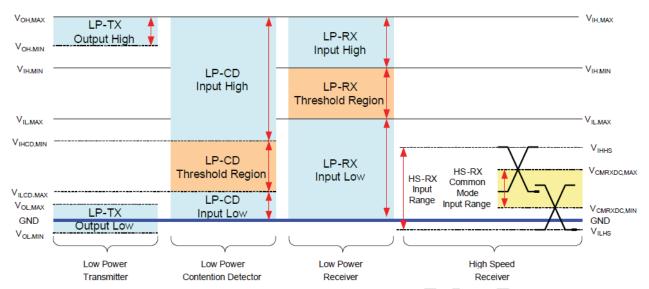

N/A

4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Damanastan	0	Value				Note
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Power Supply Voltage	VL	8.4	9	9.6	V	(1)(2)(Duty100%)
LED Light Bar Power Supply Current	lL	-	120	-	mA	-(1)(2)(Duty100%)
Power Consumption	PL	-	1.08	1.16	W	(3)
LED Life Time	L_BL	15000	-	-	Hrs	(4)

Note(1) LED current is measured by utilizing a high frequency current meter as shown below :

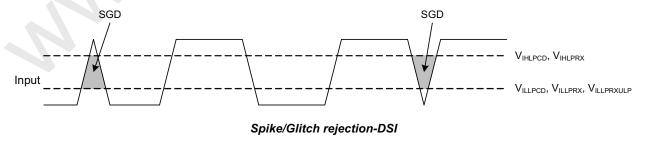


- Note(2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.
- Note(3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)
- Note(4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 20 mA(Per EA) until the brightness becomes $\leq 50\%$ of its original value.

Version 6.0 31 December 2013 9 / 43

4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS

4.4.1 DC Electrical Characteristic


4.4.1.1 DC Characteristics for DSI LP Mode

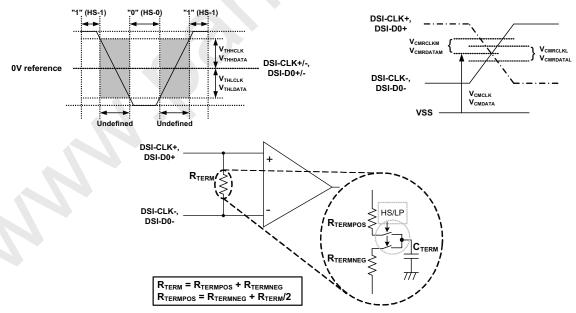
Parameter	Symbol	Conditions	S	UNIT					
r arameter	Syllibol	Conditions	MIN	TYP	MAX	ONIT			
Logic high level input voltage	VIHLPCD	LP-CD	450	-	1350	mV			
Logic low level input voltage	VILLPCD	LP-CD	0	-	200	mV			
Logic high level input voltage	VIHLPRX	LP-RX (CLK, D0, D1)	880	-	1350	mV			
Logic low level input voltage	VILLPRX	LP-RX (CLK, D0, D1)	0	-	550	mV			
Logic low level input voltage	VILLPRXULP	LP-RX (CLK ULP mode)	0	-	300	mV			
Logic high level output voltage	VOHLPTX	LP-TX (D0)	1.1	1	1.3	V			
Logic low level output voltage	VOLLPTX	LP-TX (D0)	-50	1	50	mV			
Logic high level input current	Іін	LP-CD, LP-RX	-	1	10	μΑ			
Logic low level input current	lı.	LP-CD, LP-RX	-10	-	-	μA			
Input pulse rejection	SGD	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-	-	300	Vps			

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage)

Note 2) DSI high speed is off.

Note 3) Peak interference amplitude max. 200mV and interference frequency min. 450MHz.

Version 6.0 10 / 43 31 December 2013


群創光電 PRODUCT SPECIFICATION

4.4.1.2 DC Characteristics for DSI HS Mode

Parameter	Cumahal	Conditions	S	pecificatio	n	LINIT
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
Input voltage common mode range	VCMCLK VCMDATA	DSI-CLK+/-, DSI-Dn+/- (Note2, 3)	70	-	330	mV
Input voltage common mode variation (≤ 450MHz)	VCMRCLKL VCMRDATAL	DSI-CLK+/-, DSI-Dn+/- (Note 4)	-50	1	50	mV
Input voltage common mode variation (≥ 450MHz)	VCMRCLKM VCMRDATAM	DSI-CLK+/-, DSI-Dn+/-	1	-	100	mV
Low-level differential input voltage threshold	VTHLCLK VTHLDATA	DSI-CLK+/-, DSI-Dn+/-	-70	-		mV
High-level differential input voltage threshold	VTHHCLK VTHHDATA	DSI-CLK+/-, DSI-Dn+/-	-		70	mV
Single-ended input low voltage	VILHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-40		-	mV
Single-ended input high voltage	VIHHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-	_	460	mV
Differential input termination resistor	RTERM	DSI-CLK+/-, DSI-Dn+/-	80	100	125	Ω
Single-ended threshold voltage for termination enable	VTERM-EN	DSI-CLK+/-, DSI-Dn+/-	_	-	450	mV
Termination capacitor	Стегм	DSI-CLK+/-, DSI-Dn+/-	-	-	14	pF

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage).

- Note 2) Includes 50mV (-50mV to 50mV) ground difference.
- Note 3) Without VCMRCLKM / VCMRDATAM .
- Note 4) Without 50mV (-50mV to 50mV) ground difference
- Note 5) Dn=D0, D1, D2 and D3.

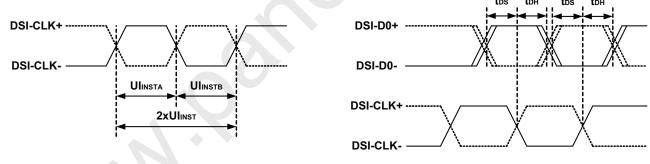
Differential voltage range, termination resistor and Common mode voltage

Version 6.0 11 / 43 31 December 2013

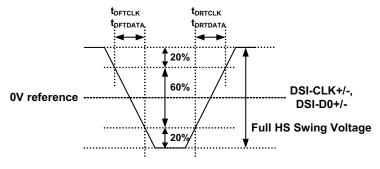
4.4.2 AC Electrical Characteristics

4.4.2.1 MIPI DSI Timing Characteristics

4.4.2.1.1 High Speed Mode


(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta = -30 to 70℃)

	(
Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description	
			4	-	8	ns	4 Lane (Note 2)	
DSI-CLK+/-	2xUIINST	Double UI instantaneous	3	1	8	ns	3 Lane (Note 2)	
			2.352	-	8	ns	2 Lane (Note 3)	
			2	-	4	ns	4 Lane (Note 2)	
DSI-CLK+/-	DSI-CLK+/- Ulinsta	INSTA UI instantaneous halfs INSTB (UI = UIINSTA = UIINSTB)	1.5	-	4	ns	3 Lane (Note 2)	
	Omorb		1.176	-	4	ns	2 Lane (Note 3)	
DSI-Dn+/-	tos	Data to clock setup time	0.15xUI	-	-	ps		
DSI-Dn+/-	tон	Data to clock hold time	0.15xUI	-	-	ps		
DSI-CLK+/-	t DRTCLK	Differential rise time for clock	150	- ,	0.3xUI	ps		
DSI-Dn+/-	t DRTDATA	Differential rise time for data	150	-	0.3xUI	ps		
DSI-CLK+/-	tdftclk	Differential fall time for clock	150	-	0.3xUI	ps		
DSI-Dn+/-	t DFTDATA	Differential fall time for data	150	-	0.3xUI	ps		


Note 1) Dn = D0, D1, D2 and D3.

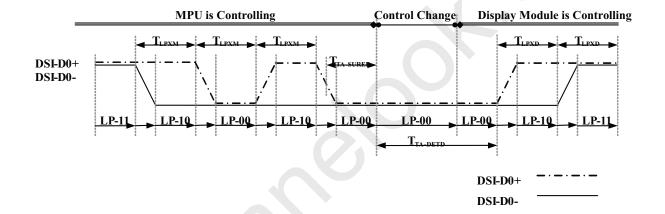
Note 2) Maximum total bit rate is 2Gbps for 24-bit data format, 1.5Gbps for 18-bit data format and 1.33Gbps for 16-bit data format in 3 lanes or 4 lanes application which support to 800RGBx 1280 resolution.

Note 3) Maximum total bit rate is 1.7Gbps for 24-bit data format, 1.275Gbps for 18-bit data format and 1.13Gbps for 16-bit data format in 2 lanes application which support to 720RGBx1280 resolution.

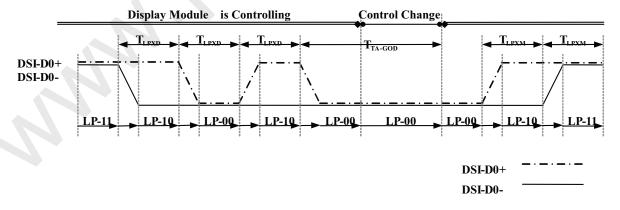
DSI clock channel timing

Rising and fall time on clock and data channel

Version 6.0 12 / 43 31 December 2013



群創光電 PRODUCT SPECIFICATION


4.4.2.1.2 Low Power Mode

 $(VDDI=1.7\sim1.9V, VCI=3.0 \text{ to } 3.6V, GND=0V, Ta = -30 \text{ to } 70\%)$

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-D0+/-	Тьрхм	Length of LP-00, LP-01, LP-10 or LP-11 periods MPU → Display Module	50	1	75	ns	Input
DSI-D0+/-	Tlpxd	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module → MPU	50 - 75		ns	Output	
DSI-D0+/-	Tta-sured	Time-out before the MPU start driving	TLPXD	1	2xTlpxd	ns	Output
DSI-D0+/-	Tta-getd	Time to drive LP-00 by display module	5xTlpxd	ı	ı	ns	Input
DSI-D0+/-	Tta-god	Time to drive LP-00 after turnaround request - MPU	4xTLPXD	-	-	ns	Output

Bus Turnaround (BAT) from MPU to display module Timing

Bus Turnaround (BAT) from display module to MPU Timing

Version 6.0 13 / 43 31 December 2013

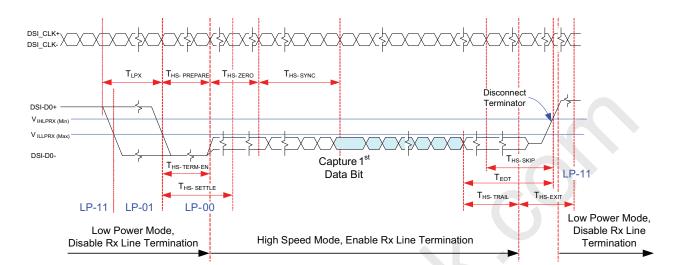
群創光電 PRODUCT SPECIFICATION

4.4.2.1.3 DSI Bursts

 $(VDDI=1.7\sim1.9V, VCI=3.0 \text{ to } 3.6V, GND=0V, Ta = -30 \text{ to } 70^{\circ}C)$

(<i>VDDI=1.7~1.9V</i> , <i>VCI=3.0 to 3.6V</i> , <i>GND=0V</i> ,1a = -30 to 70 to									
Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description		
	Low Power Mode to High Speed Mode Timing								
DSI-Dn+/-	TLPX	Length of any low power state period	50	-	-	ns	Input		
DSI-Dn+/-	Ths-prepare	Time to drive LP-00 to prepare for HS transmission	40+4xUI	-	85+6xUI	ns	Input		
DSI-Dn+/-	Ths-term-en	Time to enable data receiver line termination measured from when Dn crosses VILMAX	-	-	35+4xUI	ns	Input		
		High Speed Mode to Low	Power Mode	Timing					
DSI-Dn+/-	Ths-skip	Time-out at display module to ignore transition period of EoT	40	-	55+4xUI	ns	Input		
DSI-Dn+/-	Ths-exit	Time to drive LP-11 after HS burst	100	-		ns	Input		
DSI-Dn+/-	Ths-trail	Time to drive flipped differential state after last payload data bit of a HS transmission burst	60+4xUI	-	-	ns	Input		
		High Speed Mode to/from Lo	w Power Mo	de Timii	ng				
DSI-CLK+/-	Tclk-pos	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+52xUI	-	-	ns	Input		
DSI-CLK+/-	Tclk-trail	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	-	ns	Input		
DSI-CLK+/-	Ths-exit	Time to drive LP-11 after HS burst	100	-	-	ns	Input		
DSI-CLK+/-	Tclk-prepare	Time to drive LP-00 to prepare for HS transmission	38	-	95	ns	Input		
DSI-CLK+/-	Tclk-term-en	Time-out at clock lane display module to enable HS transmission	-	-	38	ns	Input		
DSI-CLK+/-	TCLK-PREPARE + TCLK-ZERO	Minimum lead HS-0 drive period before starting clock	300	-	-	ns	Input		
DSI-CLK+/-	Tclk-pre	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8xUI	-	-	ns	Input		

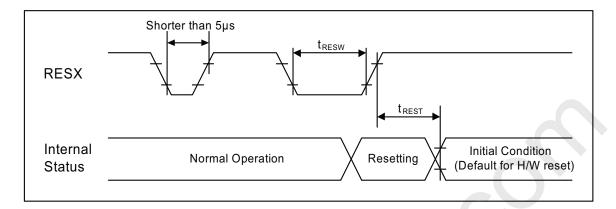
Note 1) Dn = D0, D1, D2 and D3.


Version 6.0 14 / 43 31 December 2013

Note 2) Two HS transmission can be sent with a break as short as Ths-EXIT from each other in continuous clock mode. In discontinuous mode, the break is longer which account Tclk-pos, Tclk-trail and Ths-Exit, before activity in clock and data lanes again.

群創光電 PRODUCT SPECIFICATION

Data lanes-Low Power Mode to/from High Speed Mode Timing

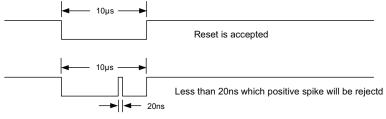


Clock lanes- High Speed Mode to/from Low Power Mode Timing

Version 6.0 15 / 43 31 December 2013

4.4.2.2 Reset Input Timing

Reset input timing


(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70°C)

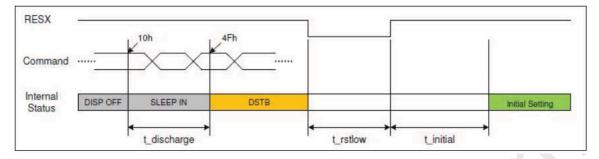
Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
	tresw	Reset "L" pulse width (Note 1)	10	-	-	μs	
PEGA		-	-	5	ms	When reset applied during Sleep In Mode	
TLEOX.	RESX trest	Reset complete time (Note 2)		1	120	ms	When reset applied during Sleep Out Mode and Note 5

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action				
Shorter than 5µs	Reset Rejected				
Longer than 10µs	Reset				
Between 5µs and 10µs	Reset Start				

- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (t_{REST}) within 5ms after a rising edge of RESX.
- Note 4) Spike Rejection also applies during a valid reset pulse as shown below:

Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.


Version 6.0 31 December 2013 16 / 43

群創光電 PRODUCT SPECIFICATION

4.4.2.3 Deep Standby Mode Timing

 $(VDDI=1.7\sim1.9V, VCI=3.0 \text{ to } 3.6V, GND=0V, Ta = -30 \text{ to } 70\%)$

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
	t _{discharge}	Sleep in into DSTB delay time	1	-	100	ms	
RESX	t_{rstlow}	Reset low pulse	3	-	-	ms	
	t _{initial}	Reset high to initial setting delay time	-	-	120	ms	

Note 1) t_discharge suggested delay time over 100ms.

Note 2) t_initial suggested delay time over 120ms.

Version 6.0 31 December 2013 17 / 43

4.5 MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode.

Note: The product only supports Video Mode operation.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

4.5.1 MIPI Lane Configuration

	MCU (Master) Display Module (Slave)				
	Unidirectional Lane				
Clock Lane+/-	■ Clock Only				
	■ Escape Mode(ULPS Only)				
	Bi-directional Lane				
Data Lane0+/-	■ Forward High-Speed				
Data Laneu+/-	■ Bi-directional Escape Mode				
	■ Bi-directional LPDT				
Data Lane1+/-	Unidirectional				
Data Lane 1+/-	■ Forward High speed				
Data Lane2+/-	Unidirectional				
Data Lane2+/-	■ Forward High speed				
Data Lane3+/-	Unidirectional				
Data Lanes+/-	■ Forward High speed				

The connection between host device and display module is as reference.

Note: Usually, we suggest host can use non-continuous clock mode & non-burst mode with sync events to transmit the video stream to enhance ESD ability.

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

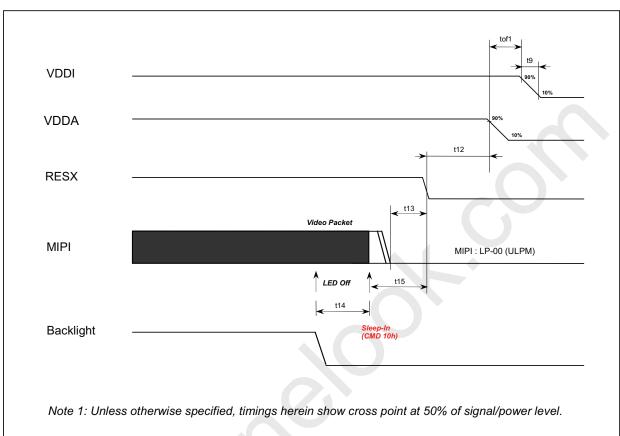
a. Power on:

VDDI=1.7~1.9V, VCI(VDDA)=3.0 to 3.6V

Note 1: Unless otherwise specified, timings herein show cross point at 50% of signal/power level.

Note 2: Reset signal H to L to H (#1) is better than only L to H (#2).

	Value					
Symbol	Min.	Тур.	Max.	Unit	Remark	
ton1	0	-	-	ms		
t2	-	No limit	-	μs		
t4	40	-	-	ms		
t5	20	-	-	ms		
t6	0	-	t4	ms		
t7	10	-	-	μs		
t8	8	-	-	VS	Keep data more than 8 frames (VS)	


Version 6.0 31 December 2013 19 / 43

b. Power off:

VDDI=1.7~1.9V, VCI(VDDA)=3.0 to 3.6V

		Value			
Symbol	Min.	Тур.	Max.	Unit	Remark
t9	150	-	-	μs	
tof1	0	-	-	ms	
t12	0	-	-	ms	
t13	0	-	-	ms	
t14	0	-	-	ms	
t15	100	-	-	ms	

Version 6.0 20 / 43 31 December 2013

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

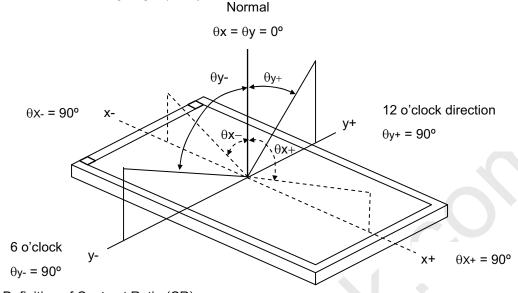
Item	Symbol	Value	Unit		
Ambient Temperature	Ta 25±2		°C		
Ambient Humidity	Ha	50±10	%RH		
Supply Voltage	VDDI	1.8	V		
Supply Voltage	VCI	3.3	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current	lι	20	mA		

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		600	800	-	-	(2), (5),(7)
Response Time		T _R +T _F		-	25	30	ms	(3),(7)
CP Luminance of White		L _{CP}		300	350	-	Cd/m ²	(4), (6),(7)
Color Coordinate	White	Wx Wy	θ_x =0°, θ_Y =0° Viewing Normal Angle		0.313			
	R	Rx Ry		Typ - 0.34 0.03 0.34	0.618 0.340	Typ + 0.03		(4),
	G	Gx Gy			0.344		-	(6),(7)
	В	Bx By			0.160 0.074			
NTS	SC	%		55	60			(2). (5).(7)
White Variation	5 point	θ _x =0°, θ _Y =0°	80			%	(5).	
	13 point		67				(6) .(7)	
Flick	er	dB				-30		(8)
Cross	talk	%				2		(9)
Gam	ma		θ _x =0°, θ _Y =0°	2.0	2.2	2.4		
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR>10	170	178	-	Deg.	(1),(5) ,(7)
	Vertical	$\theta y - + \theta y +$		170	178	-		

Version 6.0 31 December 2013 21 / 43


22 / 43

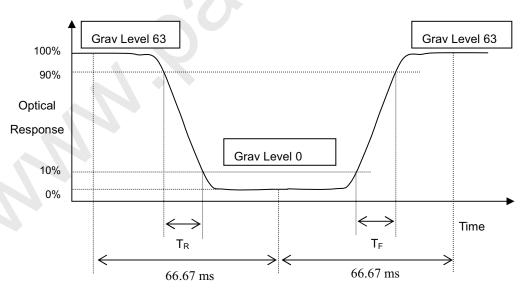
群創光電 PRODUCT SPECIFICATION

Note(1) Definition of Viewing Angle (θx , θy)

Note(2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

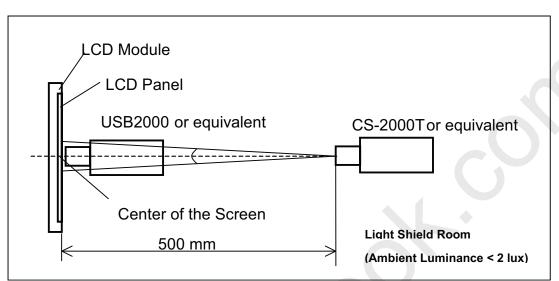
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note(3) Definition of Response Time (T_R, T_F) :

Note(4) Definition of Center Point Luminance of White (L_{CP}):

Measure the luminance of gray level 63 at center point

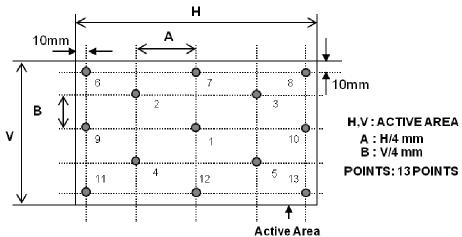
$$L_{CP} = L(5)$$


L(x) is corresponding to the luminance of the point X at Figure in Note (6)

Version 6.0 31 December 2013

Note(5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



Note(6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 13 points

$$\delta W_{9p} = \{Minimum [L (1) \sim L (13)] / Maximum [L (1) \sim L (13)]\}*100\%$$

Note(7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

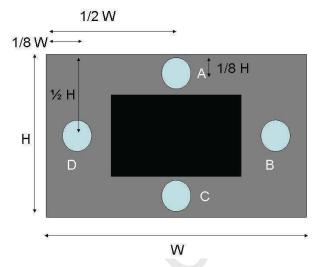
Version 6.0 31 December 2013 23 / 43

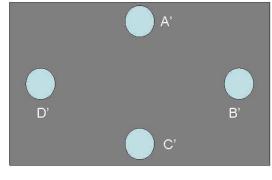
Note(8) Flicker

No visual flicker will be allowed. The flicker level should be measured on GS127, The output signal is measured by Minolta CA210 immediately while Vcom is optimized. The flicker is essentially a ratio of the Amplitude in the frequency spectrum at 30 Hz (A30) and 0 Hz (A0), i.e.,

$$F = 20 \text{ Log } (A30 / A0).$$

Note(9) Crosstalk


No visual cross-talk will be allowed. Two luminance values are measured at the same position (i.e. A and A'). The cross-talk, is defined as,


 $C(A, B, C, D)=|(L(A', B', C', D') - L(A, B, C, D))/L(A, B, C, D)| \cdot 100\%,$

Where, L(A, B, C, D) = Luminance in Position A, B, C, D

L(A', B', C', D') = Luminance in Position A', B', C', D'

Crosstalk=max (C(A), C(B), C(C), C(D))

Background: GS 127

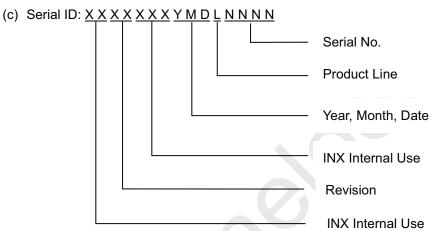
Center Pattern: GS 0, $50\%(W) \times 50\%(H)$.

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	70°C, 240 hours	
Low Temperature Storage Test	-20℃, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour←→70°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	60°C, 240 hours	(1) (2)
Low Temperature Operation Test	-10℃, 240 hours	(· / (– /
High Temperature & High Humidity Operation Test	60°ℂ, RH 90%, 240hours	
ESD Test (Operation)	Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±12KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

- Note(1) Criteria: Normal display image with no obvious non-uniformity and no line defect. (should be checked with 8% ND filter and within 45° viewing angle from vertical)
- Note(2) Evaluation should be tested after storage at room temperature for more than two hour
- Note(3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 6.0 31 December 2013 25 / 43


7. PACKING

7.1 MODULE LABEL

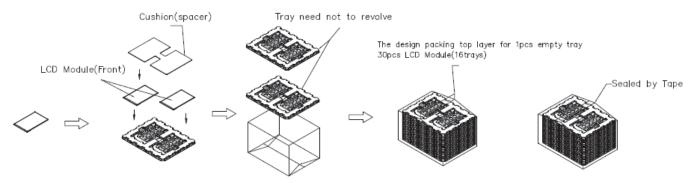
The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

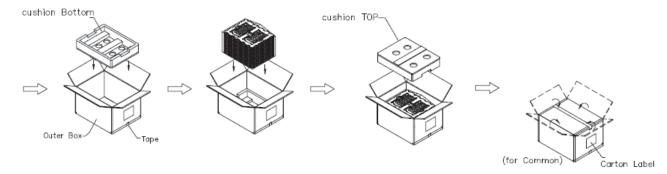
- (a) Model Name: N080ICE GB1
- (b) Revision: Rev. XX, for example: C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.


Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U


- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

7.2 CARTON

- (1) Box Dimensions: 435(L)*350(W)*275(H)
- (2) 30 Modules/Carton

Figure. 7-1 Packing method

群創光電 PRODUCT SPECIFICATION

7.3 PALLET

Sea & Land Transportation

Air Transportation

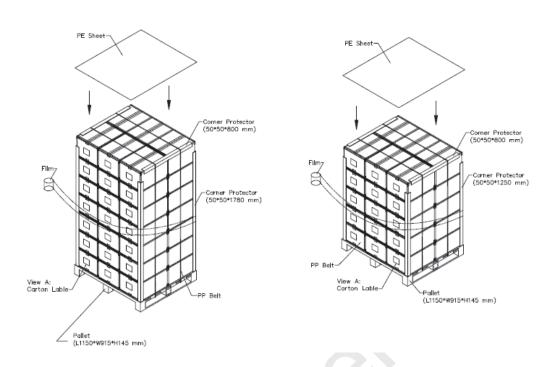


Figure. 7-2 Packing method

群創光電 PRODUCT SPECIFICATION

7.4 Un-Packing

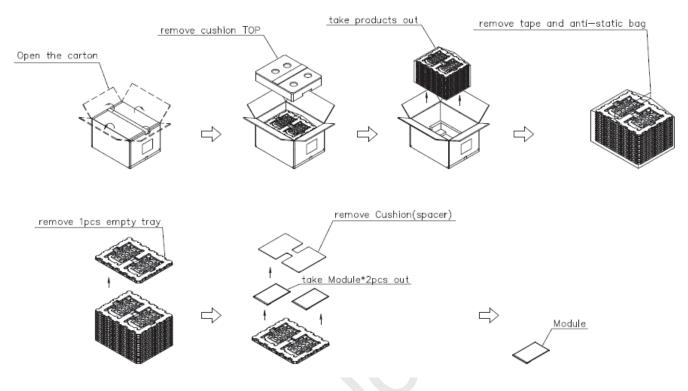
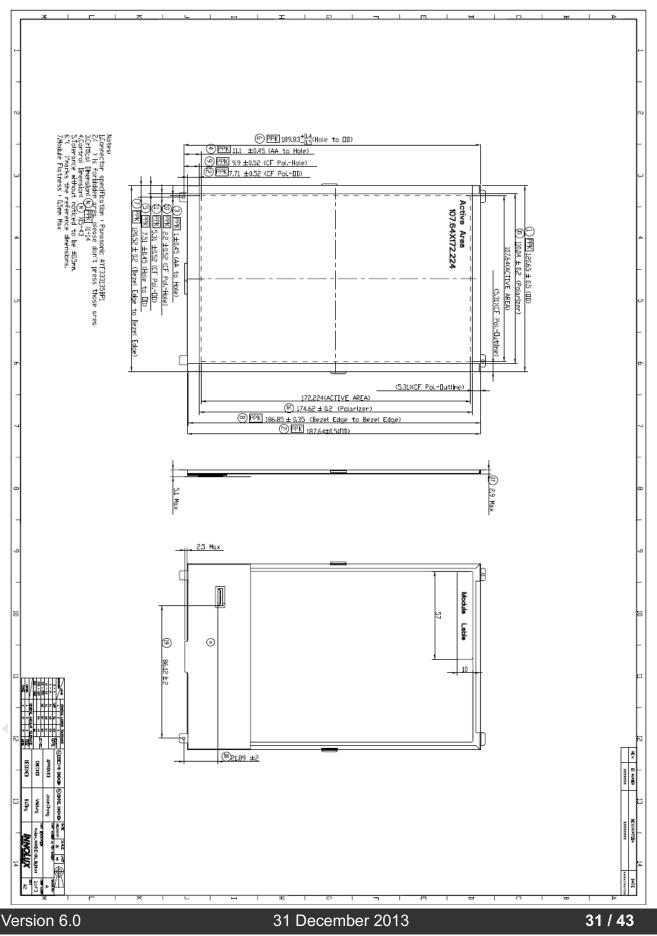


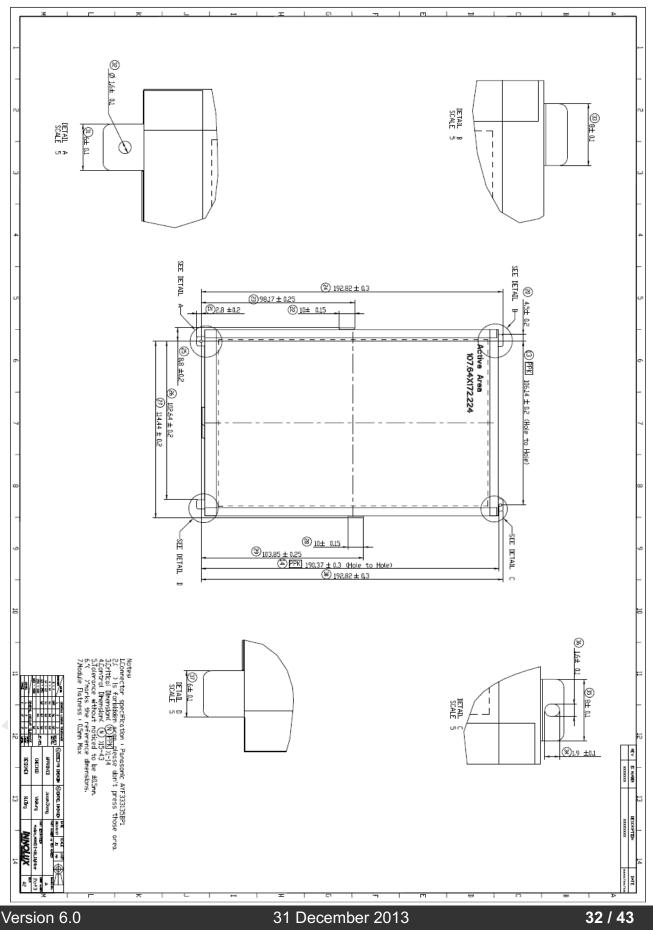
Figure. 7-3 Un-Packing method

29 / 43 Version 6.0 31 December 2013

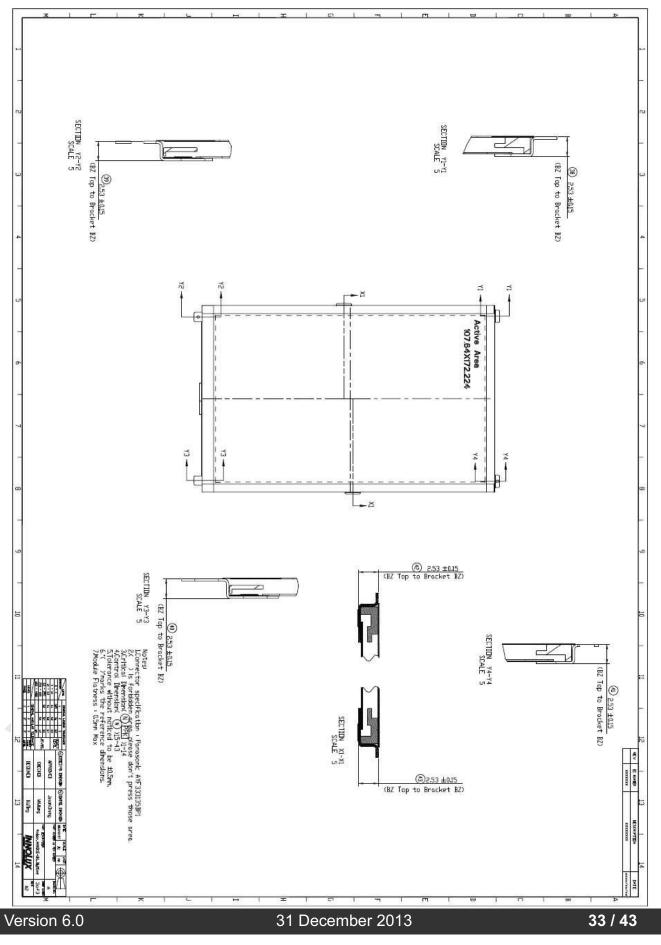


Appendix I. OUTLINE DRAWING (Label position will be updated as requirement)

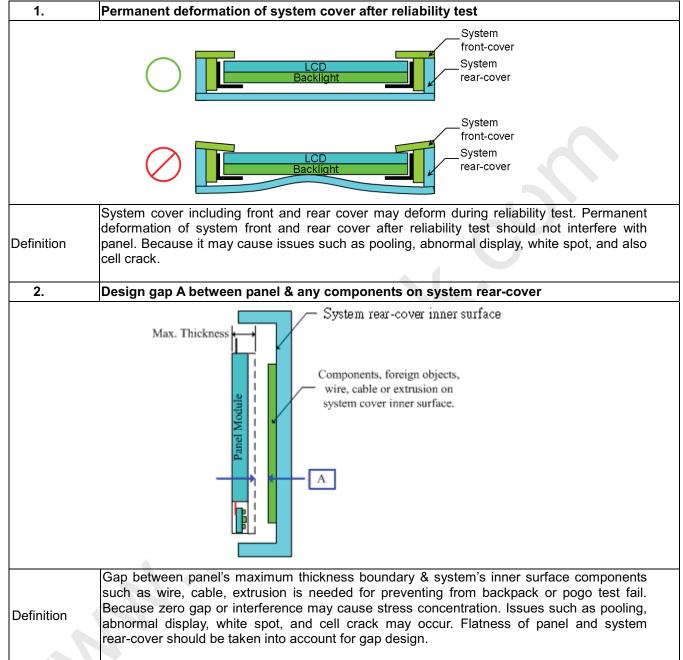
Version 6.0 31 December 2013 **30 / 43**



群創光電 PRODUCT SPECIFICATION

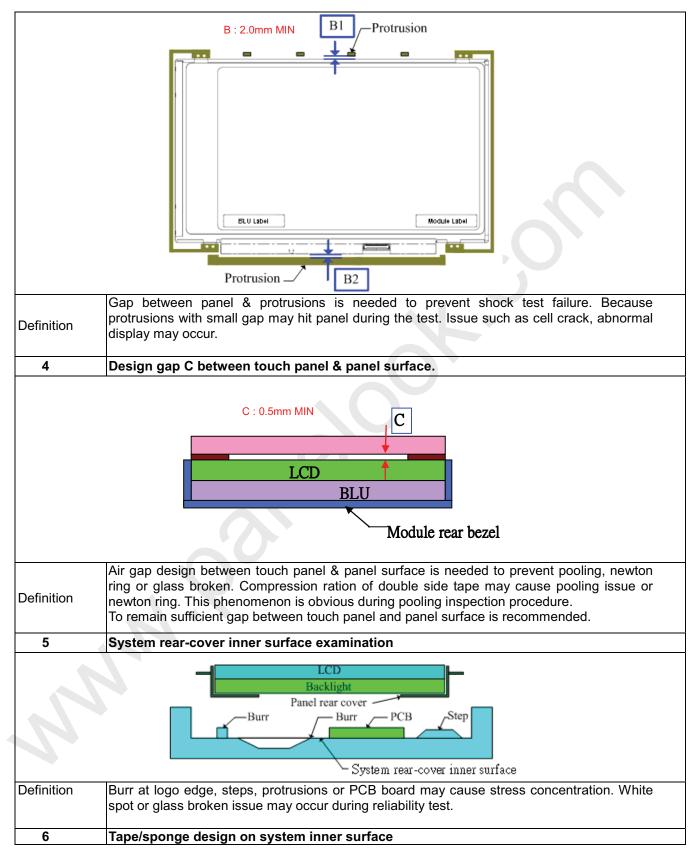

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.



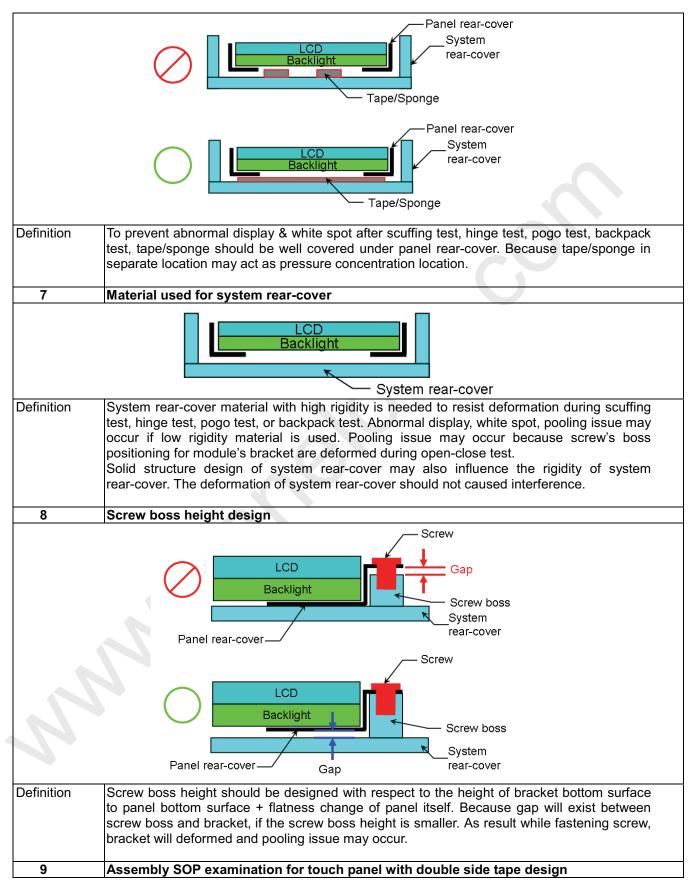
The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

Appendix II. SYSTEM COVER DESIGN GUIDANCE

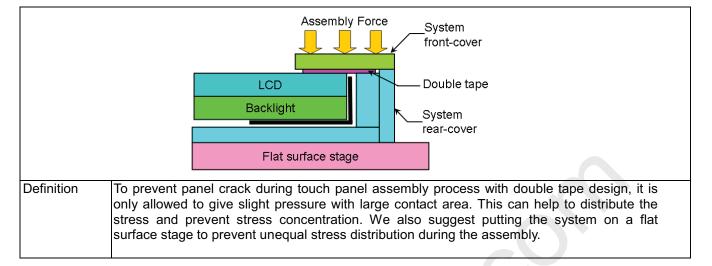


Version 6.0 31 December 2013 34 / 43

Design gap B1 & B2 between panel & protrusions



Version 6.0 31 December 2013 35 / 43


群創光電 PRODUCT SPECIFICATION

Version 6.0 31 December 2013 36 / 43

Version 6.0 37 / 43 31 December 2013

Appendix III. NT35521 REGISTER SETTING

REGW 0xFF,0xAA,0x55,0xA5,0x80

//====== Internal setting ======

REGW 0x6F,0x11,0x00

REGW 0xF7,0x20,0x00

REGW 0x6F,0x06

REGW 0xF7,0xA0

REGW 0x6F,0x19

REGW 0xF7,0x12

REGW 0x6F,0x08

REGW 0xFA,0x40

REGW 0x6F,0x11

REGW 0xF3,0x01

//===== page0 relative =======

REGW 0xF0,0x55,0xAA,0x52,0x08,0x00

REGW 0xC8, 0x80

REGW 0xB1,0x6C,0x01

REGW 0xB6,0x08

REGW 0x6F,0x02

REGW 0xB8,0x08

REGW 0xBB,0x74,0x44

REGW 0xBC,0x00,0x00

REGW 0xBD, 0x02,0xB0,0x0C,0x0A,0x00

//====== page1 relative =======

REGW 0xF0,0x55,0xAA,0x52,0x08,0x01

REGW 0xB0,0x05,0x05

Version 6.0 31 December 2013 38 / 43

REGW 0xB1,0x05,0x05

REGW 0xBC,0x90,0x01

REGW 0xBD,0x90,0x01

REGW 0xCA,0x00

REGW 0xC0,0x04

REGW 0xBE,0x29

REGW 0xB3,0x37,0x37

REGW 0xB4,0x19,0x19

REGW 0xB9,0x44,0x44

REGW 0xBA,0x24,0x24

//====== page2 relative =======

REGW 0xF0,0x55,0xAA,0x52,0x08,0x02

REGW 0xEE,0x01

REGW 0xEF,0x09,0x06,0x15,0x18

regw 0xB0,0x00,0x00,0x00,0x25,0x00,0x43

regw 0x6F,0x06

regw 0xB0,0x00,0x54,0x00,0x68,0x00,0xA0

regw 0x6F,0x0C

regw 0xB0,0x00,0xC0,0x01,0x00

regw 0xB1,0x01,0x30,0x01,0x78,0x01,0xAE

regw 0x6F,0x06

regw 0xB1,0x02,0x08,0x02,0x50,0x02,0x52

regw 0x6F,0x0C

regw 0xB1,0x02,0x96,0x02,0xDC

regw 0xB2,0x03,0x08,0x03,0x49,0x03,0x77

regw 0x6F,0x06

regw 0xB2,0x03,0xA3,0x03,0xAC,0x03,0xC2

regw 0x6F,0x0C

Version 6.0 31 December 2013 **39 / 43**

regw 0xB2,0x03,0xC9,0x03,0xE3 regw 0xB3,0x03,0xFC,0x03,0xFF

// PAGE6 : GOUT Mapping, VGLO select

regw 0xF0, 0x55,0xAA,0x52,0x08,0x06

regw 0xB0, 0x00,0x10

regw 0xB1, 0x12,0x14

regw 0xB2, 0x16,0x18

regw 0xB3, 0x1A,0x29

regw 0xB4, 0x2A,0x08

regw 0xB5, 0x31,0x31

regw 0xB6, 0x31,0x31

regw 0xB7, 0x31,0x31

regw 0xB8, 0x31,0x0A

regw 0xB9, 0x31,0x31

regw 0xBA, 0x31,0x31

regw 0xBB, 0x0B,0x31

regw 0xBC, 0x31,0x31

regw 0xBD, 0x31,0x31

regw 0xBE, 0x31,0x31

regw 0xBF, 0x09,0x2A

regw 0xC0, 0x29,0x1B

regw 0xC1, 0x19,0x17

regw 0xC2, 0x15,0x13

regw 0xC3, 0x11,0x01

regw 0xE5, 0x31,0x31

regw 0xC4, 0x09,0x1B

regw 0xC5, 0x19,0x17

regw 0xC6, 0x15,0x13

regw 0xC7, 0x11,0x29

regw 0xC8, 0x2A,0x01

regw 0xC9, 0x31,0x31

regw 0xCA, 0x31,0x31

regw 0xCB, 0x31,0x31

regw 0xCC, 0x31,0x0B

regw 0xCD, 0x31,0x31

regw 0xCE, 0x31,0x31

Version 6.0 31 December 2013 40 / 43


```
regw 0xCF, 0x0A,0x31
```

regw 0xD0, 0x31,0x31

regw 0xD1, 0x31,0x31

regw 0xD2, 0x31,0x31

regw 0xD3, 0x00,0x2A

regw 0xD4, 0x29,0x10

regw 0xD5, 0x12,0x14

regw 0xD6, 0x16,0x18

regw 0xD7, 0x1A,0x08

regw 0xE6, 0x31,0x31

regw 0xD8, 0x00,0x00,0x00,0x54,0x00

regw 0xD9, 0x00,0x15,0x00,0x00,0x00

regw 0xE7, 0x00

// PAGE3 :

regw 0xF0, 0x55,0xAA,0x52,0x08,0x03

regw 0xB0, 0x20,0x00

regw 0xB1, 0x20,0x00

regw 0xB2, 0x05,0x00,0x00,0x00,0x00

regw 0xB6, 0x05,0x00,0x00,0x00,0x00

regw 0xB7, 0x05,0x00,0x00,0x00,0x00

regw 0xBA, 0x57,0x00,0x00,0x00,0x00

regw 0xBB, 0x57,0x00,0x00,0x00,0x00

regw 0xC0, 0x00,0x00,0x00,0x00

regw 0xC1, 0x00,0x00,0x00,0x00

regw 0xC4, 0x60

regw 0xC5, 0x40

// PAGE5 :

regw 0xF0, 0x55,0xAA,0x52,0x08,0x05

regw 0xBD, 0x03,0x01,0x03,0x03,0x03

regw 0xB0, 0x17,0x06

regw 0xB1, 0x17,0x06

Version 6.0 31 December 2013 41 / 43

regw 0xB2, 0x17,0x06

regw 0xB3, 0x17,0x06

regw 0xB4, 0x17,0x06

regw 0xB5, 0x17,0x06

regw 0xB8, 0x00

regw 0xB9, 0x00

regw 0xBA, 0x00

regw 0xBB, 0x02

regw 0xBC, 0x00

regw 0xC0, 0x07

regw 0xC4, 0x80

regw 0xC5, 0xA4

regw 0xC8, 0x05,0x30

regw 0xC9, 0x01,0x31

regw 0xCC, 0x00,0x00,0x3C

regw 0xCD, 0x00,0x00,0x3C

regw 0xD1, 0x00,0x04,0xFD,0x07,0x10

regw 0xD2, 0x00,0x05,0x02,0x07,0x10

regw 0xE5, 0x06

regw 0xE6, 0x06

regw 0xE7, 0x06

regw 0xE8, 0x06

regw 0xE9, 0x06

regw 0xEA, 0x06

regw 0xED, 0x30

REGW 0x6F,0x11

REGW 0xF3,0x01

Version 6.0 31 December 2013 42 / 43

regw 0x35

regw 0x11

regw 0x29

Version 6.0 31 December 2013 43 / 43