

Doc. Number:

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: N156HCE SUFFIX: EN1 Rev.C4

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note :	
Please return 1 copy for your con signature and comments.	nfirmation with your

Approved By	Checked By	Prepared By
鄭宏偉	趙雪豔	張志誠

Version 3.1

9 May 2022

1/48

INNOLUX 群創光電

PRODUCT SPECIFICATION

CONTENTS

A A	ppendix. OUTLINE DRAWING ppendix. SYSTEM COVER DESIGN ppendix. LCD MODULE HANDLING Version 3.1	GUIDANCE	
А			
А			
A			
٨	ppendix. EDID DATA STRUCTURE		
8	3 OPERATION PRECAUTIONS		
8	2 STORAGE PRECAUTIONS		
8	1 HANDLING PRECAUTIONS		
8. PR	ECAUTIONS		29
7	4 UN-PACKAGING METHOD		
	3 PALLET		
	2 CARTON		
	1 MODULE LABEL		
	CKING		
	LIABILITY TEST ITEM		
	2 OPTICAL SPECIFICATIONS		
	1 TEST CONDITIONS		
	TICAL CHARACTERISTICS		
	6 POWER ON/OFF SEQUENCE		
Л	5 DISPLAY TIMING SPECIFICATIO		
4	4.4.1 DISPLAY PORT INPUT SIGNAL 1		
Л	4 DISPLAY PORT INPUT SIGNAL T		
	4.3.3 BACKLIGHT UNIT		
	4.3.2 LED CONVERTER SPECIFI		
4	4.3.1 LCD ELETRONICS SPECIFI		
	3 ELECTRICAL CHARACTERISTIC		
	2. INTERFACE CONNECTIONS		
	1 FUNCTION BLOCK DIAGRAM		
	3.2.1 TFT LCD MODULE		
3	2 ELECTRICAL ABSOLUTE RATIN		
	1 ABSOLUTE RATINGS OF ENVIRO		
	SOLUTE MAXIMUM RATINGS		
	1 CONNECTOR TYPE		
	CHANICAL SPECIFICATIONS		
	2 GENERAL SPECIFICATIONS		
	1 OVERVIEW		

REVISION HISTORY

Version	Date	Page	Description
3.0	Mar.18,2021	All	Spec Ver. 3.0 was first issued.
3.1	May.09,2022	P14	Inrush Current update according to the public version

Version 3.1

9 May 2022

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

屏库:全球液晶屏交易中心

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N156HCE-EN1 is a 15.6" (15.6" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 30 pins eDP interface. This module supports 1920 x 1080 FHD mode and can display 16,777,216 colors.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	15.6" diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.17925 (H) x 0.17925 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	- 1	-
Display Colors	16,777,216	color	-
Color depth	6bit + HiFRC	•	
Transmissive Mode	Normally Black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Color Gamut	100 (Typ)	%(sRGB)	
Luminance, White	400	Cd/m2	
Response Time	Тур:Тк 11 / Т⊧9	ms	
Contrast Ratio	Typ:1200/Min:1000		
Border size(L/R/U)	3.25 / 3.25 / 3.25	mm	
View Angle(U/D/R/L)	89/89/89/89	Deg	
Blacklight Unit	LEDs 12 strings x 6 parallel		
Electrical Interface	eDP1.2		
RoHs Compliance	Yes		
Power Consumption	Total 4.958W (Max.) @ cell 0.858 W (Max.), B	L 4.1W (Max.)	(1)
Special Function	Static DRRS (Not Support) Seamless DRRS(sDRRS)(Not Support) PSR (Not support) PSR 1+ sDRRS(Not support) PSR 2+ LRR(Not support) CABC(Not support)		

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas mosaic pattern is displayed.

Note (2) Display port interface signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2 (eDP1.2). There are many optional items described in eDP1.2. If some optional item is requested, please contact us.

Version 3.1

9 May 2022

 $\langle P \rangle$

PRODUCT SPECIFICATION

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	350.36	350.66	350.96	mm	(1)
Module Size	Vertical (V)	205.04	205.34	205.64	mm	(1) (2)
	Thickness (T)	-	2.45	2.60	mm	(2)
Active Area	Horizontal	343.86	344.16	344.46	mm	
Active Area	Vertical	193.29	193.59	193.89	mm	
	Weight	-	293	304	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Dimensions are measured by caliper.

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-030E-76

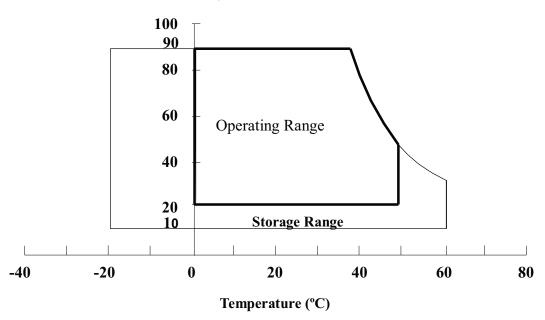
User's connector Part No: IPEX-20453-030T-03

Version 3.1

9 May 2022

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT


Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Unit	NOLE	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}		220/2	G/ms	(3),(4),(5)	
Vibration (Non-Operating)	V _{NOP}		1.5	G	(3),(4),(6)	

Note (1) (a) 90 %RH Max. (Ta < 40 °C).

(b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

Relative Humidity (%RH)

Note (3) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (4) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough

so that the module would not be twisted or bent by the fixture.

Note (5) half sine wave,1 time for each direction of ±X,±Y,±Z

Note (6) 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z

Ver	sion	3.1

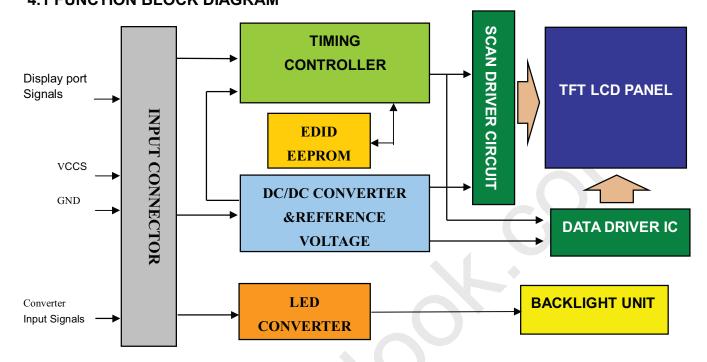
9 May 2022

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note	
	Cymbol	Min.	Max.	Onic	Note	
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)	
Converter Input Voltage	LED_VCCS	-0.3	26	V	(1)	
Converter Control Signal Voltage	LED_PWM,	-0.3	5	V	1)	
Converter Control Signal Voltage	LED_EN	-0.3	5	V	(1)	

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".


Version 3.1

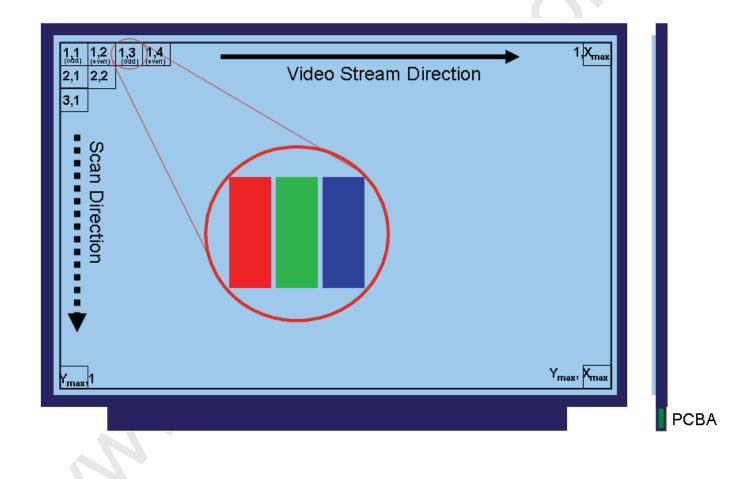
9 May 2022

4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved for LCD test)	
2	H_GND	High Speed Ground	
3	ML1-	Complement Signal-Lane 1	
4	ML1+	True Signal-Main Lane 1	
5	H_GND	High Speed Ground	
6	ML0-	Complement Signal-Lane 0	
7	ML0+	True Signal-Main Lane 0	
8	H_GND	High Speed Ground	
9	AUX+	True Signal-Auxiliary Channel	
10	AUX-	Complement Signal-Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	NC	No Connection (Reserved for LCD test)	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	BL Ground	
19	BL_GND	BL Ground	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	
22	LED_EN	BL_Enable Signal of LED Converter	
Versio	n 3.1	9 May 2022	8 / 48


 \oslash

PRODUCT SPECIFICATION

23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection (Reserved for LCD test)	
25	NC	No Connection (Reserved for LCD test)	
26	LED_VCCS	BL Power	
27	LED_VCCS	BL Power	
28	LED_VCCS	BL Power	
29	LED_VCCS	BL Power	
30	NC	No Connection (Reserved for LCD test)	

Note (1) The first pixel is odd as shown in the following figure.

Version 3.1

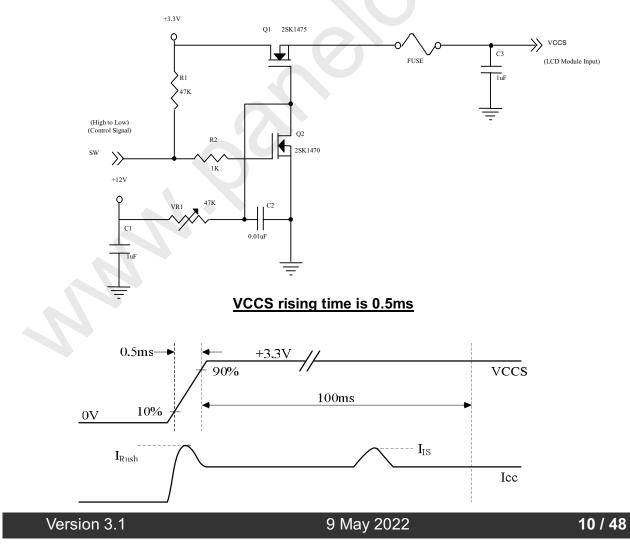
9 May 2022

 $\langle p \rangle$

PRODUCT SPECIFICATION

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

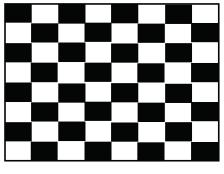

Parameter		Symbol	Value			Unit	Note
		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		VCCS	3.0	3.3	3.6	V	(1)
Ripple Voltage		V _{RP}	-	-	100	mV	(1),(6)
Inrush Current	Inrush Current		-	-	1.5	А	(1),(2)
	Mosaic		-	240	260	mA	(3)a
Power Supply Current	Black	lcc	-	220	250	mA	(3)
	Solid Pattern		-	400	426	mA	(3)b
	High Level		2.25	-	2.75	V	(5)
HPD	Low Level		0	-	0.4	V	(5)
HPD Impedance		R _{HPD}	30K	-	-	ohm	(4)

Note (1) The ambient temperature is Ta = 25 ± 2 °C.

Note (2) $I_{\mbox{\scriptsize RUSH}}$: the maximum current when VCCS is rising

 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.



Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a specified power dissipation check pattern is displayed

a. Mosaic Pattern

Active Area

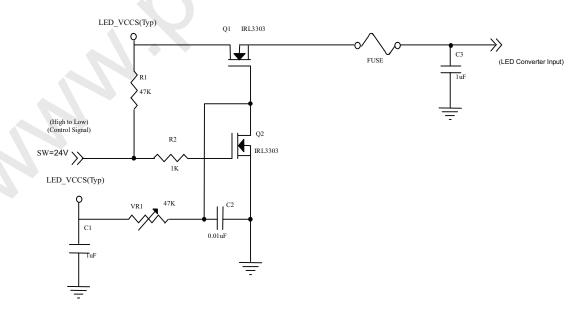
b. The solid pattern is the largest one of R/G/B pattern.

- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.
- Note (5) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action.
- Note (6) The VCCS voltage drop will occur at the frame start. We only consider the ripple voltage during active area instead of the blanking area. Meanwhile,the min VCCS need to meet "Power Supply Voltage" criteria.

Version 3.1

9 May 2022

11 / 48

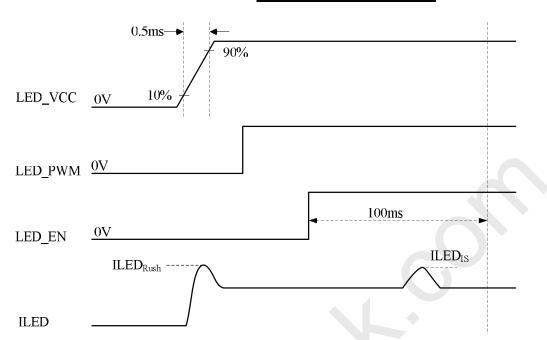

4.3.2 LED CONVERTER SPECIFICATION

Parameter		Symbol		Value	Unit	Note	
Parar	neter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	er supply voltage	LED_Vccs	5.0	12.0	21.0	V	
Converter Inrush Cu	rrent	ILED _{RUSH}	-	0.92	1.104	А	(1)
LED EN Control	Backlight On		2.2	-	5.0	V	(4)
Level	Backlight Off		0	-	0.6	v	(4)
LED_EN Ir	npedance	R _{LED_EN}	30K	-	-	ohm	(4)
	PWM High Level		2.2	-	5.0	V	(4)
PWM Control Level	PWM Low Level		0	-	0.6	V	(4)
PWM Im	pedance	R _{PWM}	30K		-	ohm	(4)
PWM Control Duty F	PWM Control Duty Ratio		5		100	%	(5)
PWM Control Permissive Ripple Voltage		VPWM_pp		<u> </u>	100	mV	
PWM Control Frequency		f _{PWM}	190	_	2K	Hz	(2)
LED Power Current	LED_VCCS =Typ.	ILED	-	298	341	mA	(3)

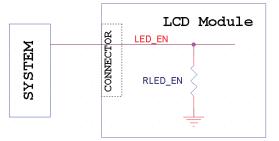
Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Min, Ta = 25 ± 2 °C, Duty=100%, White pattern.


Version 3.1

9 May 2022


VLED rising time is 0.5ms

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency f_{PWM} should be in the range $(N+0.33) * f \le f_{PWM} \le (N+0.66) * f$ N: Integer $(N \ge 3)$ f: Frame rate

- Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.
- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. For example, the figure below describes the equivalent pull down impedance of LED_EN (If it exists). The rest pull down impedances of other signals (eg. HPD, PWM ...) are in the same concept.

Note (5) If the cycle-to-cycle difference of PWM duty exceeds 0.1%, especially when the PWM duty is low, slight brightness change might be observed.

Version 3.1	9 May 2022	13 / 48

群創光電

PRODUCT SPECIFICATION

4.3.3 BACKLIGHT UNIT

					la	$a = 25 \pm 2$ °C	
Deremeter	Currente el	Value			Linit	Nata	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
LED Light Bar Power Supply Voltage	VL	32.4	34.8	36	V	(1)(2)(Dutu100%)	
LED Light Bar Power Supply Current	IL		90		mA	(1)(2)(Duty100%)	
Power Consumption	PL		2.755	2.85	W	(3)	
LED Life Time	L _{BL}	15000	-	-	Hrs	(4)	

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) PL = IL ×VL (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = $25 \pm 2 \text{ oC}$ and IL = 15 mA (Per EA) until the brightness becomes $\leq 50\%$ of its original value.

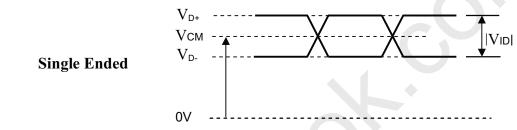
Version 3.1

9 May 2022

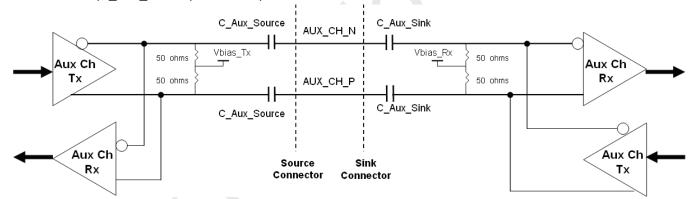
www.panelook.com

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

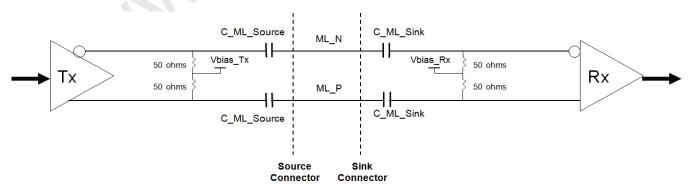
One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!


肩厚:全球液晶屏

4.4 DISPLAY PORT INPUT SIGNAL TIMING SPECIFICATIONS


4.4.1 DISPLAY PORT INTERFACE

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1) (4)
AUX AC Coupling Capacitor	C_Aux_Source	75		200	nF	(2)
Main Link AC Coupling Capacitor	C_ML_Source	75		200	nF	(3)


Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.

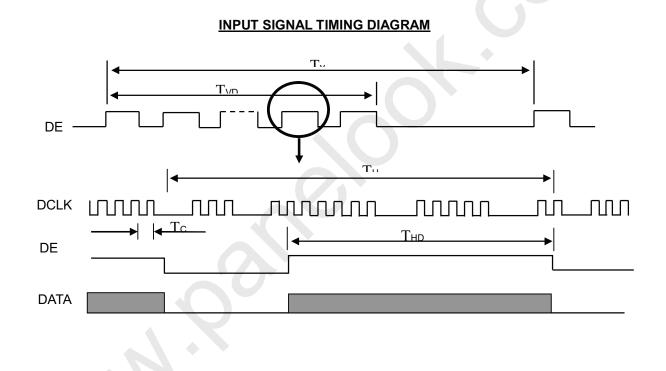
(2) Recommended eDP AUX Channel topology is as below and the AUX AC Coupling Capacitor (C_Aux_Source) should be placed on the source device.

(3) Recommended Main Link Channel topology is as below and the Main Link AC Coupling Capacitor (C_ML_Source) should be placed on the source device.

(4) The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

Version 3.1	9 May 2022	15 / 48

PRODUCT SPECIFICATION



4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

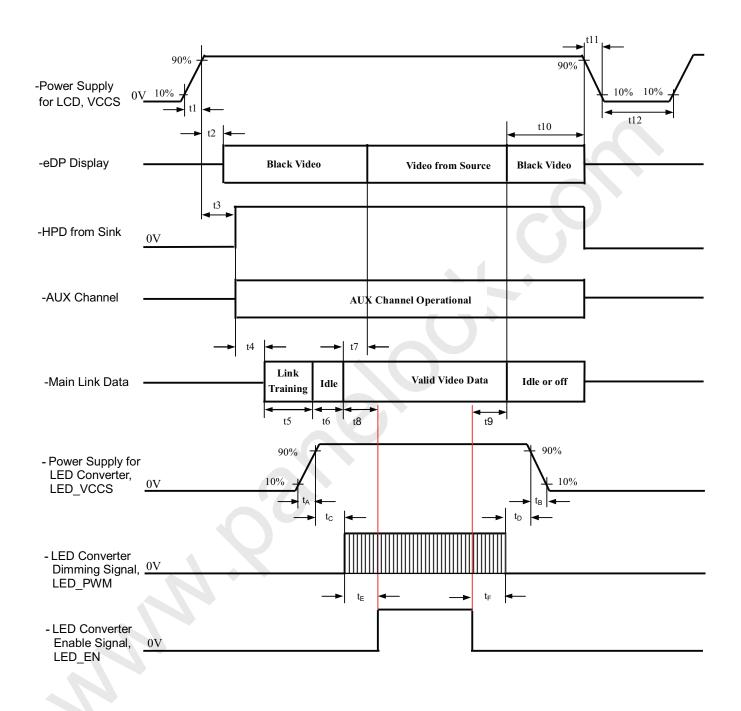
Refresh rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	138.09	138.78	139.47	MHz	-
	Vertical Total Time	TV	1108	1112	1116	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	32	TV-TVD	TH	-
	Horizontal Total Time	TH	2060	2080	2100	Тс	-
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	160	TH-THD	Тс	-

Version 3.1

9 May 2022

The copyright belongs to InnoLux. Any unauthorized use is prohibited.


One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

群創光電

PRODUCT SPECIFICATION

4.6 POWER ON/OFF SEQUENCE

Version 3.1

9 May 2022

17 / 48

Timing Specifications:

INNOLUX

群創光電

Parameter	Description	Reqd.		lue	Unit	Notes
	Power rail rise time, 10% to	By	Min	Max		
t1	90%	Source	0.5	10	ms	-
t2	Delay from LCD,VCCS to black video generation	Sink	0	200	ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below)
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	0	-	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	0	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	0	-	ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	80	-	ms	Source must assure display video is stable*: Recommended by INX. To avoid garbage image.
t9	Delay from backlight off to end of valid video data	Source	50	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image.
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	-
t12	VCCS Power off time	Source	500	-	ms	-
t _A	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t _B	LED power rail fall time, 90% to 10%	Source	0	10	ms	-
t _c	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
Version 3	1	9 May 2	2022			18 / 48

t _D	Delay from LED dimming signal to LED power falling	Source	1	-	ms	-
t⊨	Delay from LED dimming signal to LED enable signal	Source	0	-	ms	-
t _F	Delay from LED enable signal to LED dimming signal	Source	0	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:

- Upon LCDVCC power-on (within T2 max)

- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

Version 3.1

9 May 2022

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

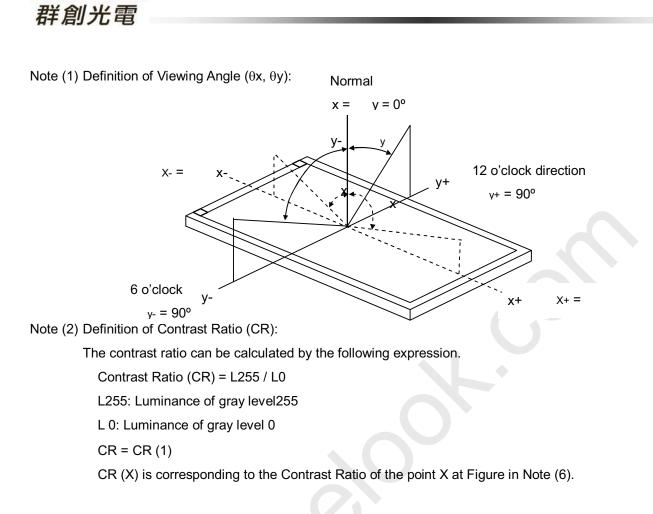
Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{cc}	3.3	V				
Input Signal	According to typical v	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
LED Light Bar Input Current	ΙL	95	mA				

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

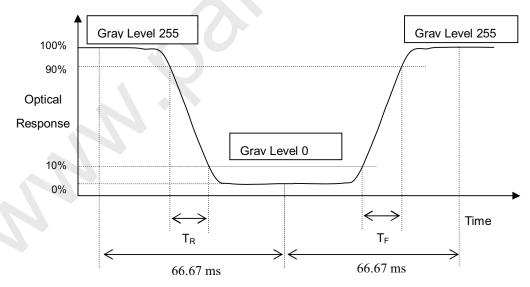
5.2 OPTICAL SPECIFICATIONS

Iter	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		1000	1200	-	-	(2), (5),(7)
Boononoo Timo		T _R		-	11	14	ms	
Response Time	;	T _F		-	9	11	ms	(3),(7)
Average Lumina	ance of White	LAVE		340	400	-	cd/m ²	(4), (6),(7)
	Red	Rx	θ _x =0°, θ _Y =0°		0.640		-	
	Reu	Ry	Viewing Normal Angle		0.330		-	
	Green	Gx	$\theta_x = 0^\circ, \theta_y = 0^\circ$	Тур – 0.03	0.300		-	(1),(7)
Color		Gy	Viewing Normal Angle		0.600	Typ +	-	
Chromaticity	Blue	Вx			0.150	0.03	-	
		Ву			0.060		-	
	White	Wx			0.313		-	
		Wy			0.329		-	
sRC	ЭB	CG		95	100		%	(5),(7),(8)
Cross	s talk	СТ		-	-	4	%	(5),(7),(9)
	Llevitentel	θ_{x} +		80	89	-		
Viewing Angle	Horizontal	θ _x -	CR≥10	80	89	-	Deg.	(1),(5),
	Vertical	. θ _Y +		80	89	-	Dey.	(7)
	Vertical	θ _Y -		80	89	-		
White Variation	of 5 Points	δW _{5p}	θ _x =0°, θ _Y =0°	80	-	-	%	(5),(6), (7)

Version 3.1


9 May 2022

The copyright belongs to InnoLux. Any unauthorized use is prohibited.


One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

PRODUCT SPECIFICATION

Note (3) Definition of Response Time (T_R , T_F):

Note (4) Definition of Average Luminance of White (LAVE):

Measure the luminance of White at 5 points

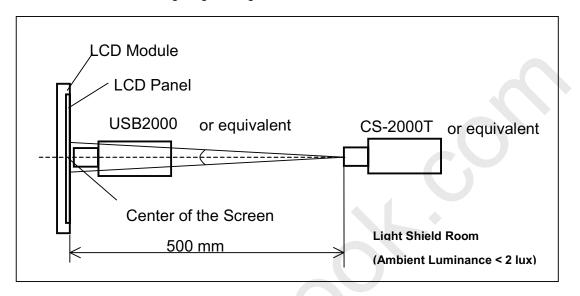
L_{AVE} = [L (1)+ L (2)+ L (3)+ L (4)+ L (5)] / 5

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Version 3.1 9 May 2022 21 / 48

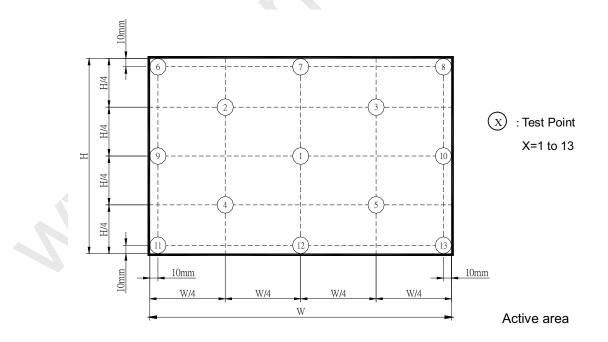
The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!


群創光電

PRODUCT SPECIFICATION

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points

 $\delta W_{5p} = {Minimum [L (1)~L (5)] / Maximum [L (1)~L (5)]}*100\%$

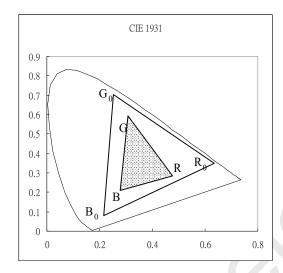
Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Version 3.1	9 May 2022	22 / 48

群創光電

PRODUCT SPECIFICATION

Note (8) Definition of color gamut (C.G%):


C.G%= Area (R, G, B) / Area (R₀, G₀, B₀,)* 100%

R₀, G₀, B₀: CIE1931 coordinates of red, green, and blue defined by NTSC.

R, G, B: CIE1931 coordinates of red, green, and blue in module at 255 gray level.

Area (R_0, G_0, B_0) : Area of the triangle defined by coordinate R_0, G_0, B_0 .

Area(R, G, B): Area of the triangle defined by

Note (9) Cross Talk (CT):

CT= \mid Y_B - \mid Y_A \mid / Y_A $\times 100\%$

Where

Y_A=Luminance of measured location in left figure

 Y_B =Luminance of measured location in right figure

1 A.34

Version 3.1

.

9 May 2022

23 / 48

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

 $\langle p \rangle$

PRODUCT SPECIFICATION

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	60ºC, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour \leftrightarrow 60°C, 0.5hour; 100 cycles, 1 hour/cycle	
High Temperature Operation Test	50°C, 240 hours	
Low Temperature Operation Test	0°C, 240 hours	(1) (2)
High Temperature & High Humidity Operation Test	50°C, 80% RH, 240 hours	(1) (2)
High Temperature & High Humidity Storage Test	40°C, 90% RH, 240 hours	
ESD Test (Operation)	150pF, 330 Ω , 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

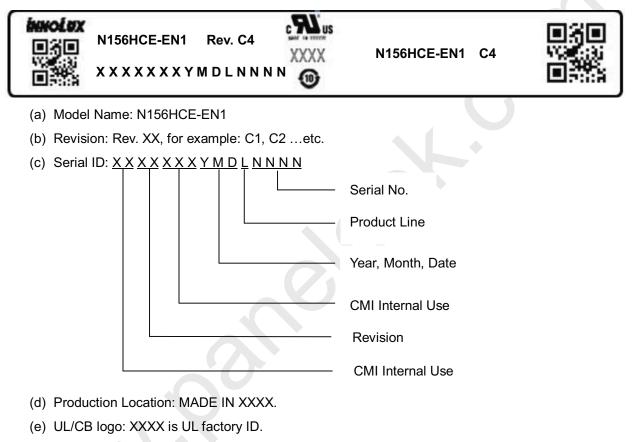
Version 3.1

9 May 2022

屏库:全球液晶屏交易中心

INNOLUX 群創光電

PRODUCT SPECIFICATION


7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted or printed on each module as illustration, and its definitions are as following explanation.

(The model name and revision shown at right side on the label is for customer recognition,

and the left side is for INX internal use.).

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I , O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Version 3.1

9 May 2022

25/48

群創光電

PRODUCT SPECIFICATION

7.2 CARTON

(1)Box Dimensions : 500(L)*370(W)*270(H) (2)20 Modules/Carton

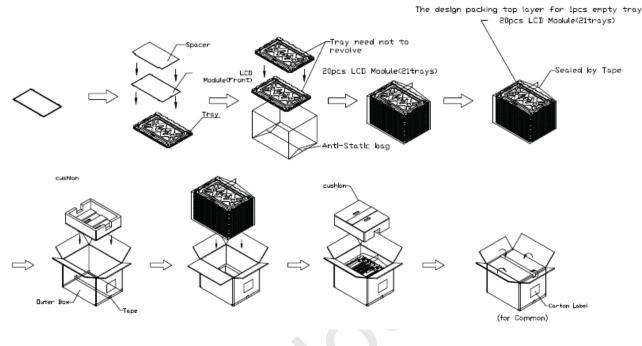


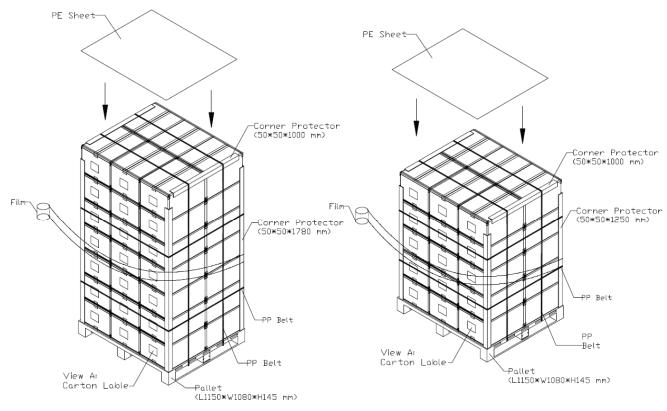
Figure. 7-2 Packing method

Version 3.1

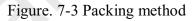
9 May 2022

26 / 48

The copyright belongs to InnoLux. Any unauthorized use is prohibited.


One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

www.panelook.com



7.3 PALLET

Sea & Land Transportation

Air Transportation

Version 3.1

9 May 2022

27 / 48

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

www.panelook.com

7.4 UN-PACKAGING METHOD

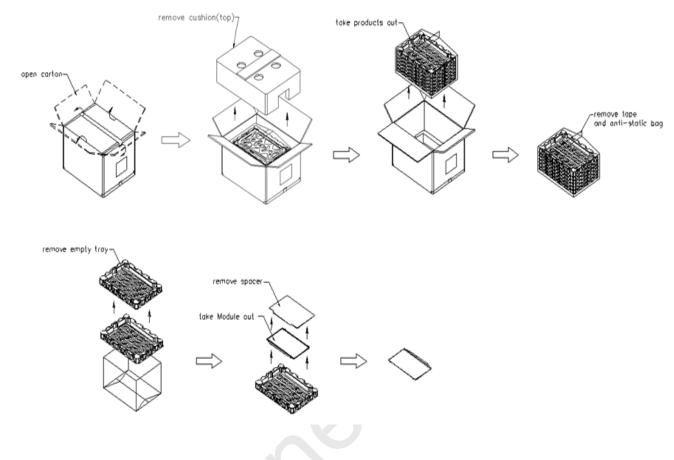


Figure. 7-4 un-packing method

Version 3.1

9 May 2022

28 / 48

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMIS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

9 May 2022

29 / 48

 $\langle \! \! \rangle$

PRODUCT SPECIFICATION

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

Byte # (decimal)	Byte # (hex)	Field Name and Comments	Value (hex)	Value (binary)
0	00	Header	00	00000000
1	01	Header	FF	11111111
2	02	Header	FF	11111111
3	03	Header	FF	11111111
4	04	Header	FF	11111111
5	05	Header	FF	11111111
6	06	Header	FF	11111111
7	07	Header	00	00000000
8	08	EISA ID manufacturer name ("CMN")	0D	00001101
9	09	EISA ID manufacturer name	AE	10101110
10	0A	ID product code (LSB)	2D	00101101
11	0B	ID product code (MSB)	15	00010101
12	0C	ID S/N (fixed "0")	00	00000000
13	0D	ID S/N (fixed "0")	00	00000000
14	0E	ID S/N (fixed "0")	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	09	00001001
17	11	Year of manufacture (fixed year code)	1F	00011111
18	12	EDID structure version ("1")	01	00000001
19	13	EDID revision ("4")	04	00000100
20	14	Video I/P definition ("Digital")	A5	10100101
21	15	Active area horizontal ("34.416cm")	22	00100010
22	16	Active area vertical ("19.359cm")	13	00010011
23	17	Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("RGB, Non-continous")	02	00000010
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	EE	11101110
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	95	10010101
27	1B	Rx=0.64	A3	10100011
28	1C	Ry=0.33	54	01010100
29	1D	Gx=0.3	4C	01001100
30	1E	Gy=0.6	99	10011001
31	1F	Bx=0.15	26	00100110
32	20	By=0.06	0F	00001111
33	21	Wx=0.313	50	01010000
34	22	Wy=0.329	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
	ion 3.1			/ 48

Version 3.1

9 May 2022

30 / 48

 \oslash

PRODUCT SPECIFICATION

4.4		Oten dend tissing ID # 0	01	00000004
41	29	Standard timing ID # 2	01	00000001
42	2A	Standard timing ID # 3	01	00000001
43	2B	Standard timing ID # 3	01	00000001
44	2C	Standard timing ID # 4	01	0000001
45	2D	Standard timing ID # 4	01	00000001
46	2E	Standard timing ID # 5	01	00000001
47	2F	Standard timing ID # 5	01	00000001
48	30	Standard timing ID # 6	01	00000001
49	31	Standard timing ID # 6	01	00000001
50	32	Standard timing ID # 7	01	00000001
51	33	Standard timing ID # 7	01	00000001
52	34	Standard timing ID # 8	01	00000001
53	35	Standard timing ID # 8	01	00000001
54	36	Detailed timing description # 1 Pixel clock ("138.78MHz")	36	00110110
55	37	# 1 Pixel clock (hex LSB first)	36	00110110
56	38	# 1 H active ("1920")	80	1000000
57	39	# 1 H blank ("160")	A0	10100000
58	3A	# 1 H active : H blank	70	01110000
59	3B	# 1 V active ("1080")	38	00111000
60	3C	# 1 V blank ("32")	20	00100000
61	3D	# 1 V active : V blank	40	01000000
62	3E	# 1 H sync offset ("48")	30	00110000
63	3F	# 1 H sync pulse width ("32")	20	00100000
64	40	# 1 V sync offset : V sync pulse width ("10 : 6")	A6	10100110
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000
66	42	# 1 H image size ("344 mm")	58	01011000
67	43	# 1 V image size ("193 mm")	C1	11000001
68	44	# 1 H image size : V image size	10	00010000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000
72	48	Detailed timing description # 2	00	00000000
73	49	# 2 Flag	00	00000000
74	4A	# 2 Reserved	00	00000000
75	4B	# 2 ASCII string Model name	FE	11111110
76	4C	# 2 Flag	00	00000000
77	4D	# 2 Character of Model name ("N")	4E	01001110
78	4E	# 2 Character of Model name ("1")	31	00110001
79	4F	# 2 Character of Model name ("5")	35	00110101
80	50	# 2 Character of Model name ("6")	36	00110110
81	51	# 2 Character of Model name ("H")	48	01001000
82	52	# 2 Character of Model name ("C")	43	01000011
83	53	# 2 Character of Model name ("E")	45	01000101
84	54	# 2 Character of Model name ("-")	2D	00101101
85	55	# 2 Character of Model name ("E")	45	01000101
86	56	# 2 Character of Model name ("N")	4E	01001110
85	55	# 2 Character of Model name ("E")	45	01000101

Version 3.1

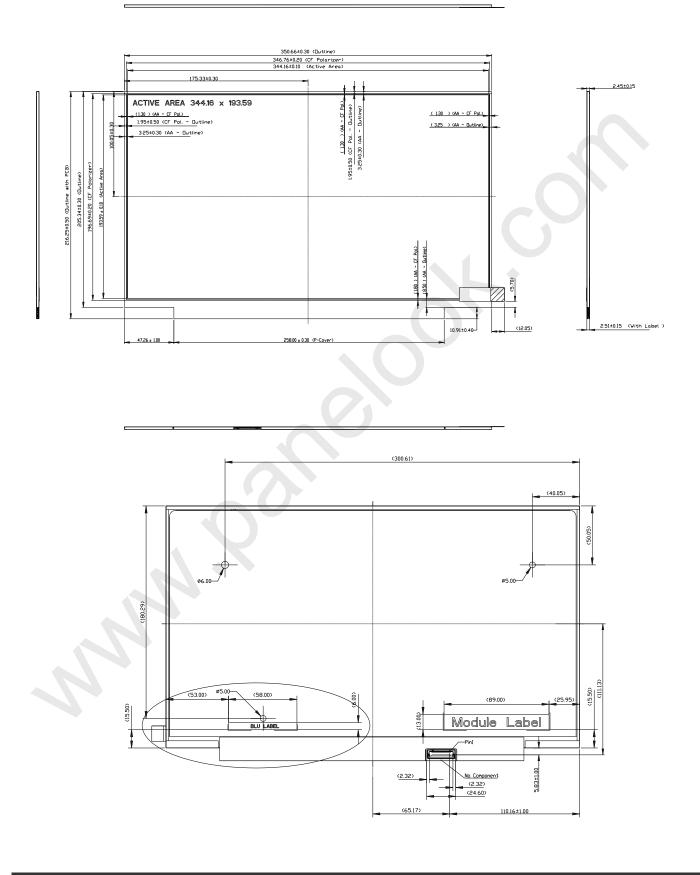
9 May 2022

31 / 48

87	57	# 2 Character of Model name ("1")	31	00110001
88	58	# 2 New line character indicates end of ASCII string	0A	00001010
89	59	# 2 Padding with "Blank" character	20	00100000
90	5A	Detailed timing description # 3	00	00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 ASCII string Vendor	FE	11111110
94	5E	# 3 Flag	00	00000000
95	5F	# 3 Character of string ("C")	43	01000011
96	60	# 3 Character of string ("M")	4D	01001101
97	61	# 3 Character of string ("N")	4E	01001110
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	0000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 ASCII string Model Name	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 Character of Model name ("N")	4E	01001110
114	72	# 4 Character of Model name ("1")	31	00110001
115	73	# 4 Character of Model name ("5")	35	00110101
116	74	# 4 Character of Model name ("6")	36	00110110
117	75	# 4 Character of Model name ("H")	48	01001000
118	76	# 4 Character of Model name ("C")	43	01000011
119	77	# 4 Character of Model name ("E")	45	01000101
120	78	# 4 Character of Model name ("-")	2D	00101101
121	79	# 4 Character of Model name ("E")	45	01000101
122	7A	# 4 Character of Model name ("N")	4E	01001110
123	7B	# 4 Character of Model name ("1")	31	00110001
124	7C	# 4 New line character indicates end of ASCII string	0A	00001010
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	C9	11001001

Version 3.1

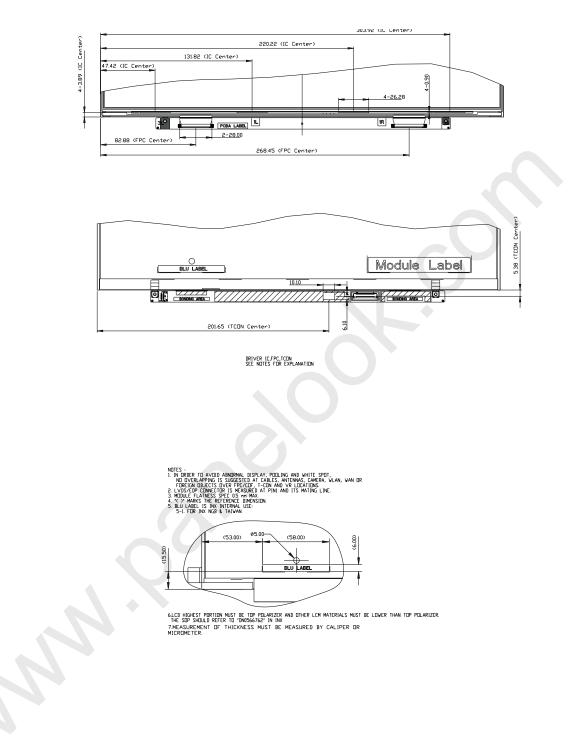
9 May 2022


32 / 48

群創光電

PRODUCT SPECIFICATION

Appendix. OUTLINE DRAWING



Version 3.1

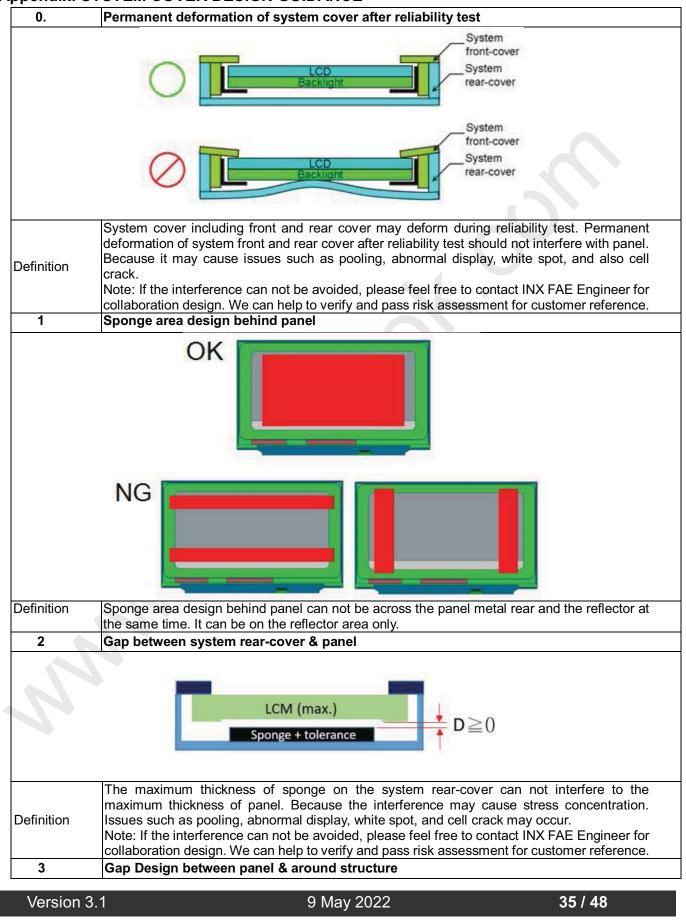
9 May 2022

Note. Dimensions measuring instruments as below,

- 1. Length/ Width/Thickness : Caliper
- 2. Height : Height gauge

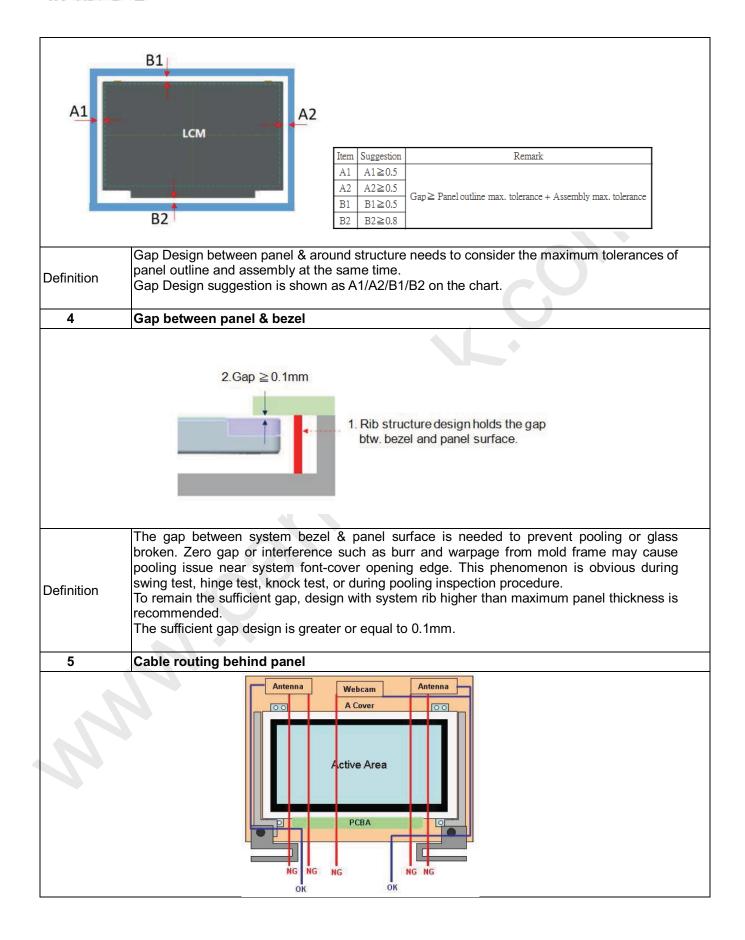
Version 3.1

9 May 2022


34 / 48

群創光電

 $\langle p \rangle$


Appendix. SYSTEM COVER DESIGN GUIDANCE

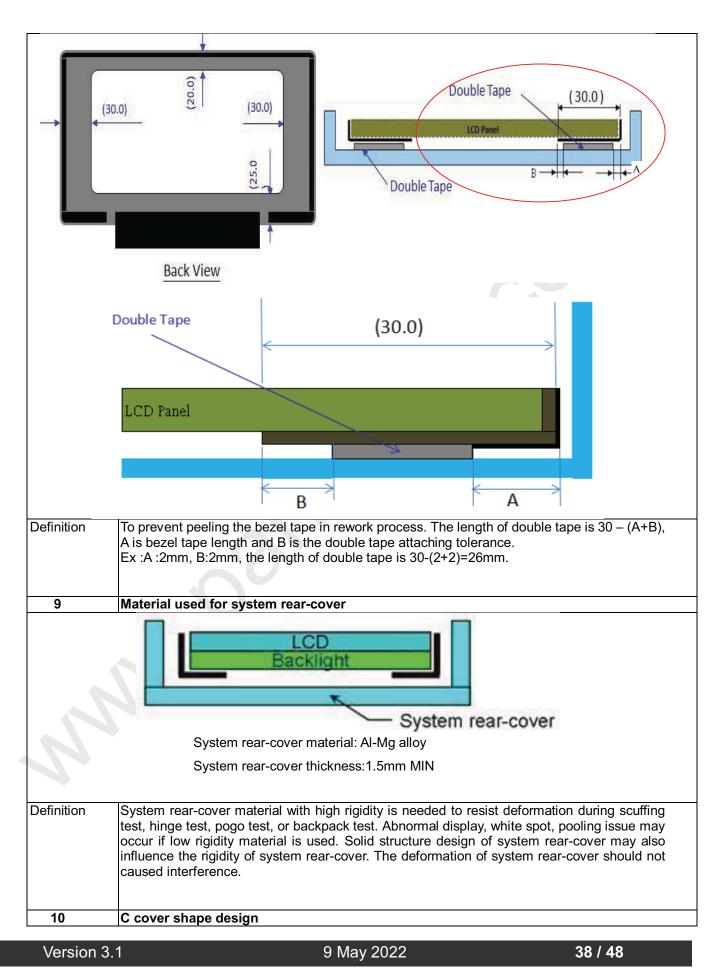
INNOLUX 群創光電

PRODUCT SPECIFICATION

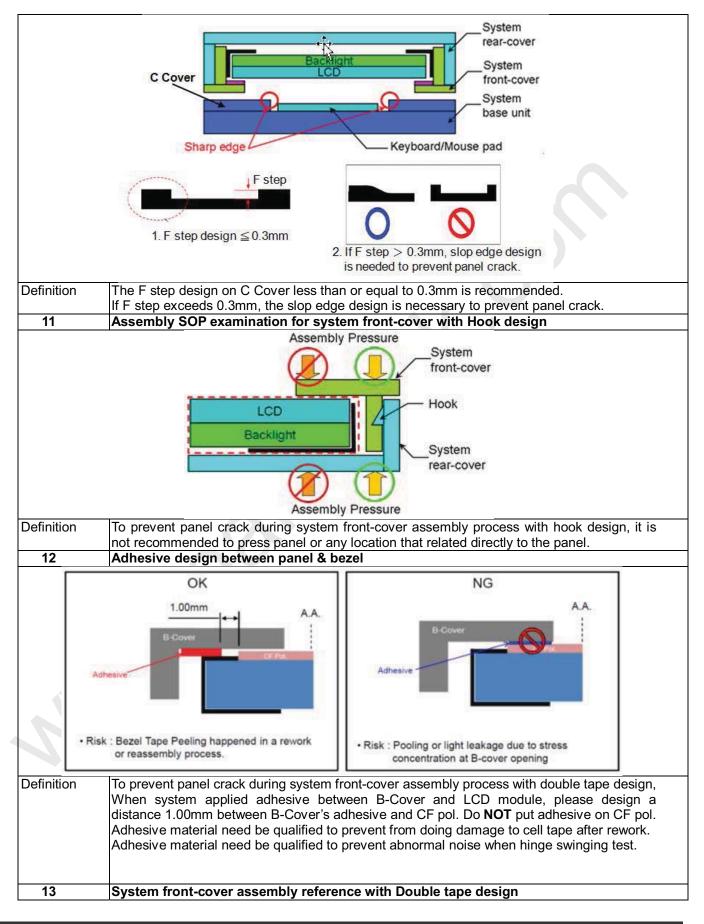
Version 3.1

9 May 2022

 \oslash


PRODUCT SPECIFICATION

Definition	It is strongly recommended that cables ro panel outline (including PCB). Because is backpack test, hinge test, twist test or poge If any routings across panel outline are nee -Using FFC/FPC to replace cables. -Routing at the right or left area of panel m -Avoid any routings at the step of panel or -No interference to panel. -It should not overlap TCON, COF/FPC, De	sue such as abnormal display o test may occur. eded, we suggest design as be etal rear. A cover.	& white spot after
6	Interference examination of antenna cal	ble and Web Cam wire	
	event panel damage, we suggest using C double tape to fix LCM module for no b		le
		A Double Tape CCD FPC	(-0.1mm) Double Tape
	Rear-cover Connector	Rear Cover Width(A)	A = 30mm
	Sponge Camera/Antenna	Cover edge to Double Tape(B)	B = 3.0mm
	Double Tape Stopper CDD Cable/FPC LCM Module	CCD FPC thickness	<0.1mm
	Hook Panel outline	Sponge thickness	0.5mm 0.2~0.3mm(compressed)
7	If the antenna cable or Web Cam wire mut antenna cable or Web Cam wire must have and sponge require higher antenna cable wire should not overlap with TCON,COF/F Note: If the interference can not be avoided collaboration design. We can help to verify System rear-cover inner surface examined	e a sponge(Sponge material ca or Web Cam wire.(Antenna PC,Driver IC) d, please feel free to contact IN and pass risk assessment for c	an not contain NH3) cable or Web Cam X FAE Engineer for
	LCD		
3	Backlight Panel rear cover Burr Sys	PCB Step stem rear-cover inner surface	
Definition	Burr at logo edge, steps, protrusions or P spot or glass broken issue may occur durir	ng reliability test.	oncentration. White
8	Tape/sponge design on system inner su	Irface	
Version 3	3.1 9 May	2022	37 / 48
	The convright belongs to Innol us. Any un		


 $\langle p \rangle$

PRODUCT SPECIFICATION

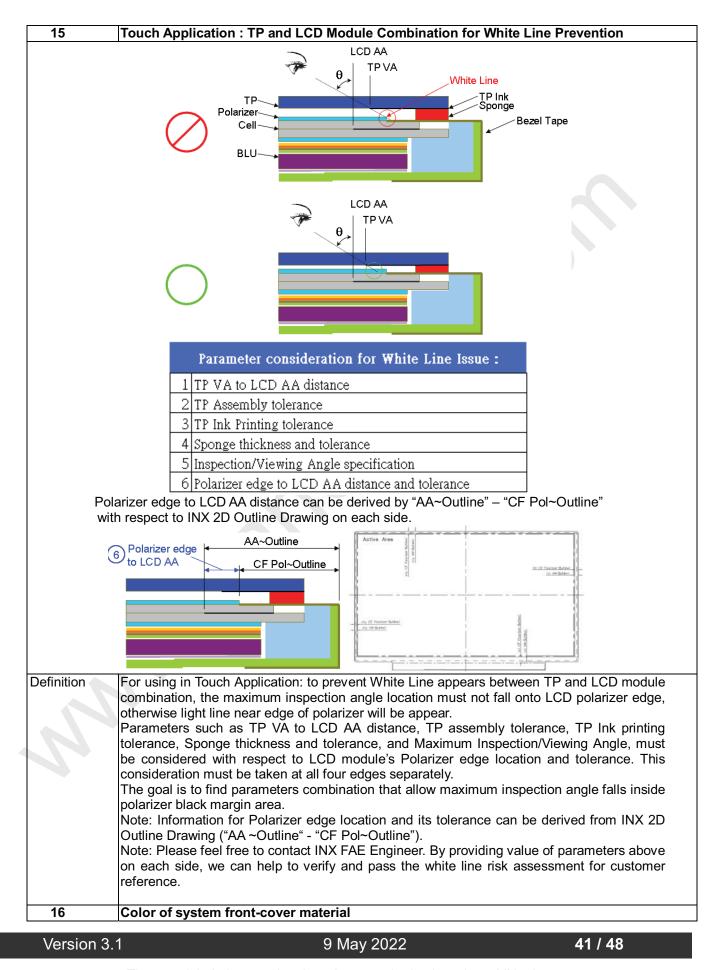
Version 3.1

9 May 2022

39/48

Definition	To prevent system front-cover peeling at double tape contact area, A gap between B-Cover & CF-Pol. Is 0.1mm min.	
14	System front-cover opening area reference with TFT-LCD module	
	≥ 0.65mm B-Cover CF Pol CF Glass	
Definition	To prevent panel the noise of B-cover & CF Pol. Distance from CF Pol. edge to front-cover edge more than 0.65mm.	

Version 3.1


9 May 2022

40 / 48

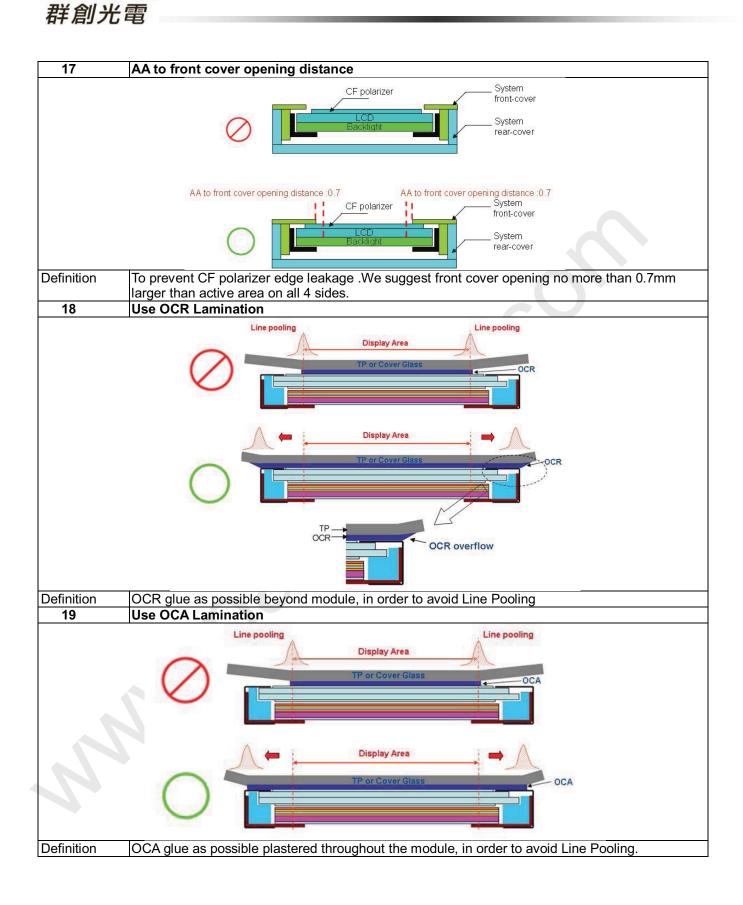
群創光電

PRODUCT SPECIFICATION

 \oslash

PRODUCT SPECIFICATION

	LCD Backlight Backlight LCD Backlight LCD Backlight System rear-cover
	LCD System front-cover Backlight System rear-cover
\oslash	Panel Module System front-cover or TP Light leakage
0	Panel Module System front-cover or TP
Definition	To prevent light leakage is seen at system front-cover due to material transparency, we suggest using dark color material (black) for system front-cover design.


Version 3.1

9 May 2022

42 / 48

PRODUCT SPECIFICATION

Version 3.1

9 May 2022

43 / 48

群創光電

PRODUCT SPECIFICATION

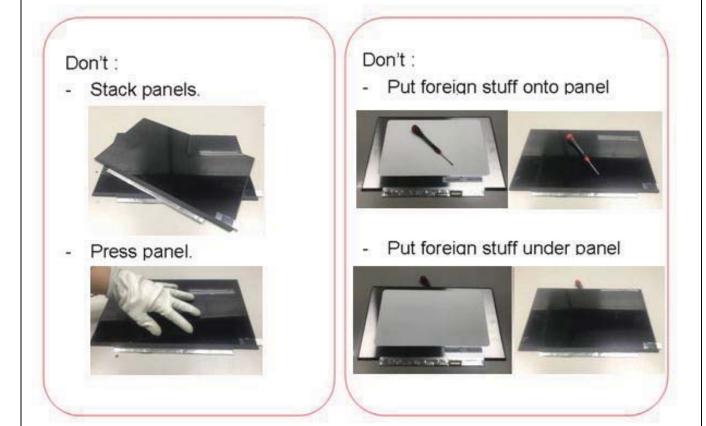
Appendix, LCD MODULE HANDI ING MANUAL

Purpose	 LCD MODULE HANDLING MANUAL This SOP is prepared to prevent panel dysfunction possibility through incorrect handling procedure. This manual provides guide in unpacking and handling steps. Any person which may contact / related with panel, should follow guide stated in this manual to prevent panel loss. 		
1.	Unpacking	· ·	
		Open carton	Remove EPE Cushion
			\Box
0	pen plastic bag	Cut Adhesive Tape	Remove EPE Cushion
2.	Panel Lifting		
Re	emove PET Cover	Remove PE Foam	Handle with care (see next page)
	Finger Slot		
Use	e slots at both sides for ndle panel upward with	finger insertion.	

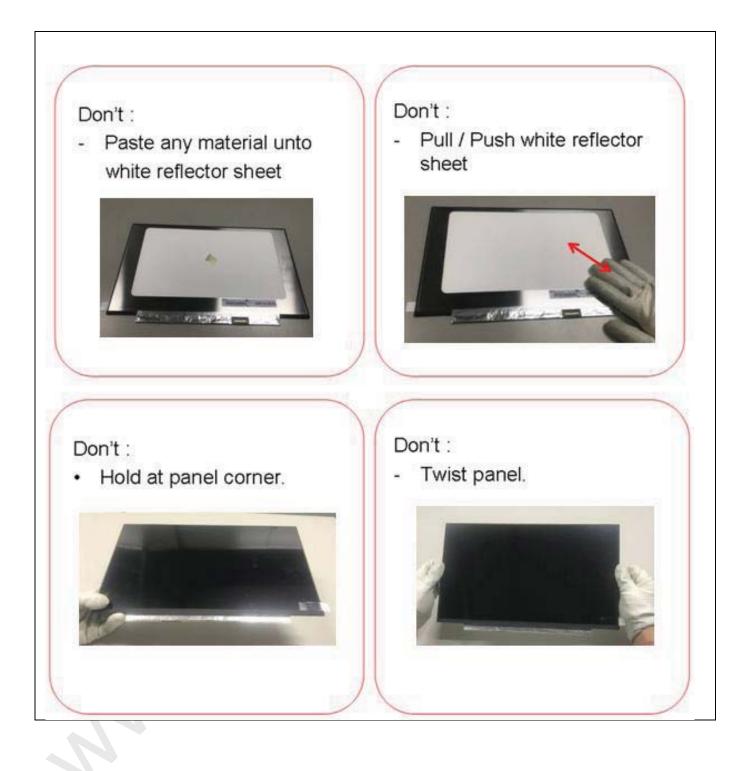
Version 3.1

9 May 2022

44 / 48



Handle at PCBA side.


Version 3.1

9 May 2022

群創光電

PRODUCT SPECIFICATION

Version 3.1

9 May 2022

 Hold panel at top edge while inserting connector.

Don't :

 Press white reflector sheet while inserting connector.

Do :

 Remove panel protector film starts from pull tape

Don't :

- Remove panel protector film From film another side.

Version 3.1

9 May 2022

47 / 48

Don't:

Do:

- Remove panel protector - Remove panel protector Film parallel X-direction film starts from Lowerright corner to Top-left Don't : Touch or Press PCBA Area.

Version 3.1

9 May 2022

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!