

PROPRIETARY NOTE

THIS SPECIFICATION IS THE PROPERTY OF BOE AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE AND MUST BE RETURNED TO BOE UPON ITS REQUEST

NV156FHM-N4X

HW:V8.0

Preliminary Product Specification

Rev. 0

BOE Optoelectronics Technology Co., Ltd

SPEC. NUMBERPRODUCT GROUPRev.ISSUE DATEPAGETFT-LCD02021.07.191 OF 64

DAS-RD-2019007-A

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. 0	2021.07.19

REVISION HISTORY

()Preliminary Specification

 $(\sqrt{\ })$ Final Specification

Revision No.	Page	Description of Changes Date		Prepared
P0	-	Initial Release	2020.11.05	Xu Lin
0	-	Update 2D,Packinng	2021.07.19	Xu Lin

REVIEWED			
Designer	Manager		
Zhan Shouqiang(Array)	Wang Wu		
Li Peng(Cell)	Li Zhe		
Pang Jiaqi(CF)	Li Min		
Huang Shifei(EE)	Ran Bo		
Zou Haixu(MO)	Sun Yansheng		
Mou Bingkai(DQA)	Cui Chaoyang		
Wen Jianghong(PI)	Chen Gang		
APPROV	TED		
Xu Lin(P	M)		

		-
	NV156FHM-N4X V8.0 Product Specification Rev. 0	2 OF 64
SPEC. NUMBER	SPEC. TITLE	PAGE

DAS-RD-2019007-A

Contents

No.	Items	Page
1.0	General Description	4
2.0	Absolute Maximum Ratings	6
3.0	Electrical Specifications	7
4.0	Optical Specifications	11
5.0	Interface Connection	15
6.0	Signal Timing Specification	16
7.0	Input Signals, Display Colors & Gray Scale of Colors	20
8.0	Power Sequence	26
9.0	Connector Description	27
10.0	Mechanical Characteristics	28
11.0	Reliability Test	29
12.0	Handling & Cautions	30
13.0	Label	31
14.0	Packing Information	33
15.0	Mechanical Outline Dimension	34
16.0	EDID Table	36
17.0	General Precautions	40
18.0	Appendix	42

SPEC. NUMBER	SPEC. TITLE	PAGE	
	NV156FHM-N4X V8.0 Product Specification Rev. 0	3 OF 64	

DAS-RD-2019007-A

1.0 GENERAL DESCRIPTION

1.1 Introduction

NV156FHM-N4X V8.0 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 15.6 inch diagonally measured active area with Full-HD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 262K(6bit) colors and color gamut 45%. The TFT-LCD panel used for this module is a low reflection and higher color type. Therefore, this module is suitable for Notebook PC. The LED driver for back-light driving is built in this model.

All input signals are eDP1.2 interface compatible.

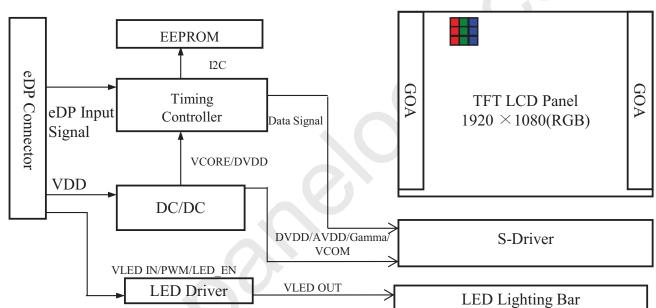


Figure 1. Drive Architecture

1.2 Features

- 2 lane eDP interface with 2.7Gbps link rates
- Thin and light weight
- 262K(6bit) color depth, color gamut 45%
- Single LED lighting bar (Bottom side/Horizontal Direction)
- Data enable signal mode
- Green product (RoHS & Halogen free product)
- On board LED driving circuit
- Low driving voltage and low power consumption
- On board EDID chip
- DPCD Version 1.1

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	4 OF 64
	*	A 4(010 X/ 007)

1.3 Application

• Notebook PC (Wide type)

1.4 General Specification

The followings are general specifications at the model NV156FHM-N4X V8.0. (listed in Table 1)

<Table 1 General Specifications>

Parameter Specification			Remarks
Active area	344.16(H) ×193.59(V)	mm	
Number of pixels	1920 (H) ×1080 (V)	pixels	
Pixel pitch	179.25(H) ×179.25(V)	um	
Pixel arrangement	RGB Vertical stripe		
Display colors	262k(6bit)		
Color gamut	45%		
Display mode	Normally Black		
Dimensional outline	350.66 ± 0.3 (H)* 205.78 ± 0.3 (V)(W/O PCB)* 3.2 (Max) 350.66 ± 0.3 (H)* 216.15 ± 0.5 (V) (W/PCB)* 3.2 (Max)	mm	
Weight	370(max)	g	
Surface treatment	Anti-Glare		
Surface hardness	3Н		
Back-light	Bottom edge side, 1-LED lighting bar type		Note 1
	P _D : 0.9(Max)	W	@Mosaic
Power consumption	P _{BL} : 3.3(Max)	W	
Conomination	P _{Total} : 4.2 (Max)	W	@Mosaic

Notes: 1. LED Lighting Bar (40*LED Array)

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	5 OF 64

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings>

la=	<u> -25+/</u>	-2	\bigcup

Parameter	Symbol	Min.	Max.	Unit	Remarks	
Power Supply Voltage	$V_{ m DD}$	-0.3	4.0	V		
eDP input Voltage	VeDP	0	2.0	V	Note 1	
Logic Supply Voltage	V _{IN}	V _{SS} -0.3	V _{DD} +0.3	V		
Operating Temperature	T _{OP}	0	+50	°C	Nata 2	
Storage Temperature	T _{ST}	-20	+60	°C	Note 2	

Notes:

- 1. Permanent damage to the device may occur if maximum values are exceeded functional operation should be restricted to the condition described under normal operating conditions.
- 2. Temperature and relative humidity range are shown in the figure below.

95 % RH Max. (40 °C \geq Ta) Maximum wet - bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

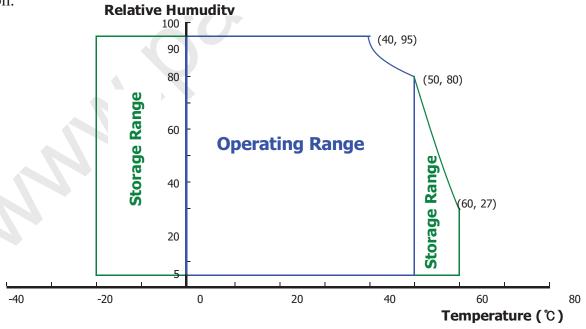


Figure 2. Temperature and Relative Humidity Range

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	6 OF 64

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. 0	2021.07.19

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

< Table 3. Electrical Specifications >

Ta=25+/-2°C

Parameter		Min.	Тур.	Max.	Unit	Remarks	
Power Supply Voltage		V_{DD}	3.0	3.3	3.6	V	Note 1
Permissible Input Ripp Voltage	le	V_{RF}	-10% VDD	-	+10% VDD	V	
Power Supply Inrush C	urrent	Inrush	-	-	2	A	Note3
Power Supply	Mosaic	I _{DD}	-	-	248	mA	
Current	RGB		-	-	349	mA	Note 1
	Mosaic	P_{M}	-	-	0.9	W	
Dayyan Cangumatian	RGB	P_{RGB}	-		1.3	W	
Power Consumption BLU	P_{BL}	-		3.3	W	Note 2	
	Total	P _{Total}	-	_	4.2	W	@Mosaic

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8 0 Product Specification Rev 0	7 OF 64

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

Notes:

- 1. The supply voltage is measured and specified at the interface connector of LCM. The current draw and power consumption specified is for 3.3V at 25 °C.
 - a) Mosaic pattern 8*8
 - b) R/G/B patterns

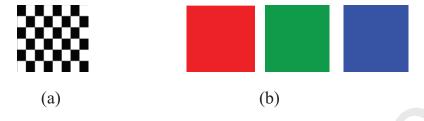


Figure 3. Power Measure Patterns

- 2. Calculated value for reference (VLED \times ILED)
- 3. Measure condition (Figure 4)

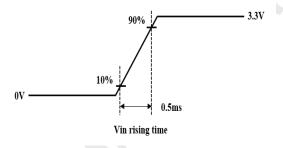
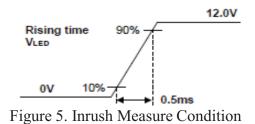


Figure 4. Inrush Measure Condition

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	8 OF 64

3.2 Backlight Unit


< Table 4. LED Driving Guideline Specifications >

Ta=25+/-2°C

8-11-11-11-11-11-11-11-11-11-11-11-11-11							
Parameter			Min.	Тур.	Max.	Unit	Remarks
LED Forward V	oltage	V_{F}	-	-	3.0	V	
LED Forward C	urrent	I_{F}	-	21	-	mA	
LED Power Inpu	ut Voltage	VLED	5	12	21	V	
LED Power Inpu	ut Current	I_{LED}	-	-	275	mA	N-4- 1
LED Power Consumption		P_{LED}	-	-	2.15	W	Note 1
Power Supply Voltage for LED Driver Inrush		Iled inrush	-	-	1.5	A	Note 3
LED Life-Time		N/A	15,000	-	_	Hour	$I_F = 21 \text{mA}$
EN Control	Backlight On	17	2.5	1	5.0	V	
Level	Backlight Off	$ m V_{BL_EN}$	0	-	0.5	V	
PWM Control	High Level	17	2.5	-	5.0	V	
Level	Low Level	$ m V_{BL_PWM}$	0	-	0.5	V	
PWM Control Frequency		F_{PWM}	200	-	2,000	Hz	
Duty Ratio			5	-	100	%	

Notes:

- 1. Power supply voltage12V for LED driver. Calculator value for reference IF \times VF \times 40 /driver efficiency = PLED
- 2. The LED life-time define as the estimated time to 50% degradation of initial luminous.
- 3. Measure condition (Figure 5)

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	9 OF 64

3.3 LED Structure

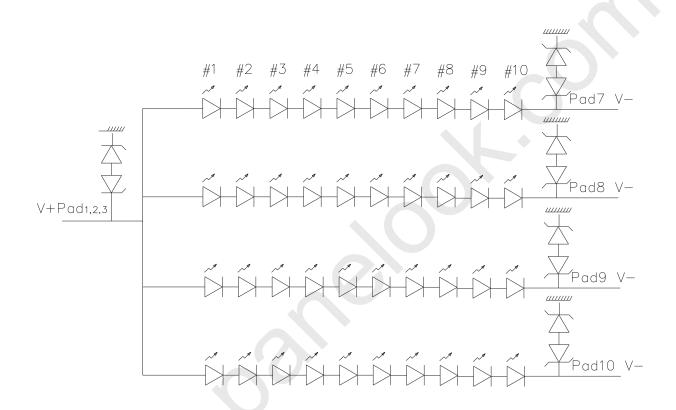


Figure 6. LED Structure

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	10 OF 64

DAS-RD-2019007-A

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. 0	2021.07.19

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature $= 25\pm 2^{\circ}\text{C}$) with the equipment of luminance meter system (PR730&PR810) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta\emptyset=0$ (= $\theta3$) as the 3 o'clock direction (the "right"), $\theta\emptyset=90$ (= $\theta12$) as the 12 o'clock direction ("upward"), $\theta\emptyset=180$ (= $\theta9$) as the 9 o'clock direction ("left") and $\theta\emptyset=270$ (= $\theta6$) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement. VDD shall be 3.3 ± 1.00 at 2.5 ± 1.00 colors.

4.2 Optical Specifications

<Table 5. Optical Specifications>

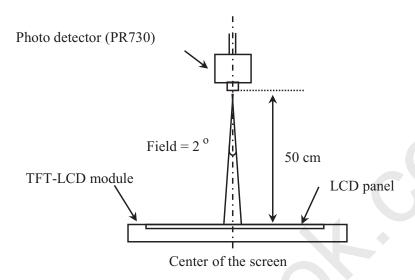
Paramo	eter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Hanimantal	Θ_3		80	85	-	Deg.	
Viewing Angle	Horizontal	Θ_9	CD > 10	80	85	-	Deg.	Note 1
Range	Vertical	Θ_{12}	CR > 10	80	85	-	Deg.	Note 1
	Vertical	Θ_6		80	85	-	Deg.	
Luminance Cor	ntrast Ratio	CR	$\Theta = 0$ °	600	800	-		Note 2
Luminance of White	5 Points	Y_{w}	$\Theta = 0$ °	212.5	250	-	cd/m ²	Note 3
White	5 Points	ΔΥ5	$I_{LED} = 21 \text{mA}$	80	-	-	%	
Luminance Uniformity	13 Points	ΔΥ13	TEED 21IIIX	62.5	71.4	-	%	Note 4
White Chron	matiaity	W_{x}	$\Theta = 0^{\circ}$	0.283	0.313	0.343		Note 5
winte Cilioi	manchy	$ m W_{v}$	6 – 0	0.299	0.329	0.359		Note 3
	Red	R_x			0.587			
	Red	R_{y}			0.369] [
Reproduction	Green	G_{x}	0.00	T 0.02	0.356	T + 0.02		
of Color	Green	G_{v}	$\Theta = 0_{\circ}$	Тур0.03	0.568	Typ.+0.03		
	D1	B_{x}			0.159			
	Blue	B_{v}			0.125			
Color Ga	amut			43	45	-	%	
Response (Rising + F		T_{RT}	Ta= 25°C $\Theta = 0^{\circ}$	-	20	25	ms	Note 6
Cross T	`alk	CT	$\Theta = 0$ °	-	-	2.0	%	Note 7

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	11 OF 64

DAS-RD-2019007-A

Notes:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see Figure 7).
- 2. Contrast measurements shall be made at viewing angle of Θ = 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state . (see Figure 7) Luminance Contrast Ratio (CR) is defined mathematically.


- 3. Center Luminance of white is defined as luminance values of 5 point average across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 8 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as : ΔY =Minimum Luminance of 5(or 13) points / Maximum Luminance of 5(or 13) points.(see Figure 8 and Figure 9).
- 5. The color chromaticity coordinates specified in Table 5 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as Figure 10 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is T_r, and 90% to 10% is T_f.
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 10±1mm diameter area, with all display pixels set to gray 127(of 0 to 255), to the luminance (YB) of that same area when any adjacent area is driven dark. The luminance ratio shall not exceed 1:1.05 (See Figure 11).

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	12 OF 64

4.3 Optical Measurements

Optical characteristics measurement setup

Figure 7. Measurement Set Up

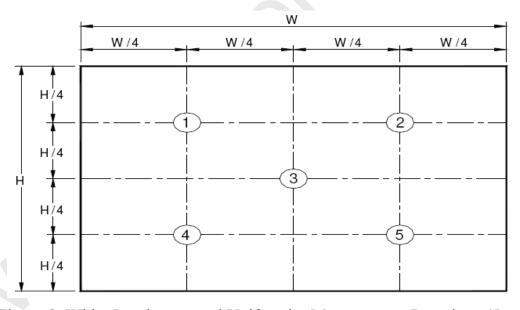


Figure 8. White Luminance and Uniformity Measurement Locations (5 points)

Center Luminance of white is defined as luminance values of center 5 points across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 7 for a total of the measurements per display.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	13 OF 64
0.4.0	*	

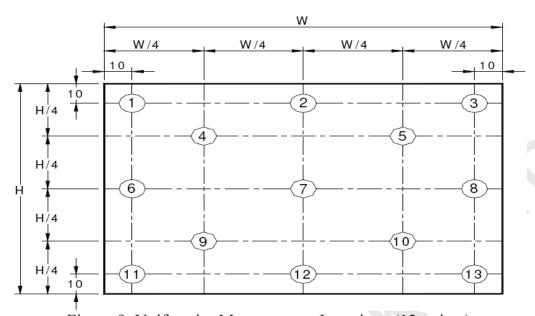


Figure 9. Uniformity Measurement Locations (13 points)

The White luminance uniformity on LCD surface is then expressed as : $\Delta Y5$ = Minimum Luminance of five points / Maximum Luminance of five points (see Figure 8), $\Delta Y13$ = Minimum Luminance of 13 points /Maximum Luminance of 13 points (see Figure 9).

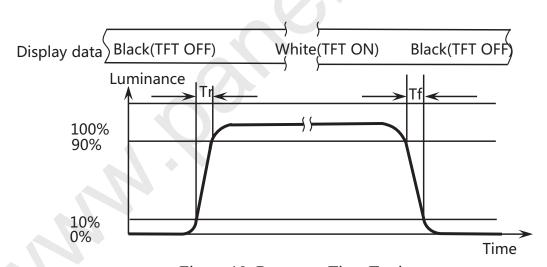
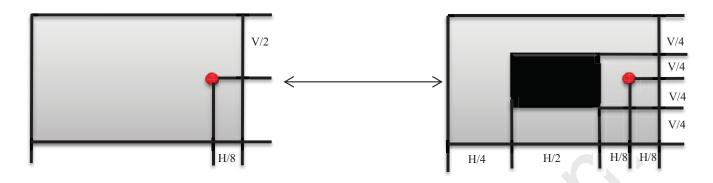


Figure 10. Response Time Testing


The electro-optical response time measurements shall be made as shown in Figure 10 by switching the "data" input signal ON and OFF. Tr: The luminance to change from 10% to 90%, Tf: The luminance to change from 90% to 10%.

The test system: LMS PR810

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	14 OF 64
DAO DD 0010007 A	*	A 4(010 X/ 007)

Cross Talk (%) =
$$\left| \frac{Y_B - Y_A}{Y_B} \right| \times 100$$

Figure 11. Cross Talk Modulation Test Description

Where:

 $Y_A = Initial luminance of measured area (cd/m²)$

 Y_B = Subsequent luminance of measured area (cd/m²)

The location measured will be exactly the same in both patterns. The test background gray is L127.

Cross Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 10 ± 1 mm diameter area, with all display pixels set to a gray level 127, to the luminance (YB) of that same area when any adjacent area is driven dark. (Refer to Figure 11) The test system: PR730

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	15 OF 64

5.0 INTERFACE CONNECTION

5.1 Electrical Interface Connection

The electronics interface connector is STM MSAK24025P30. The connector interface pin assignments are listed in Table 6.

<Table 6 Pin Assignments for the Interface Connector>

Terminal	Symbol	signments for the Interface Connector> Functions
Pin No.	Symbol	Description
1 111 110.	CABC EN	Disable
2	H GND	Ground
3	LANE1 N	eDP RX Channel 1 Negative
4	LANEI_N LANEI P	eDP RX Channel 1 Positive
5	H GND	Ground
6	LANEO N	eDP RX Channel 0 Negative
7	LANEO_N LANEO P	eDP RX Channel 0 Positive
8	 	Ground
9	H_GND	
	AUX_CH_P	eDP AUX CH Positive
10	AUX_CH_N	eDP AUX CH Negative
11	H_GND	Ground
12	LCD_VCC	Power Supply, 3.3V (typ.)
13	LCD_VCC	Power Supply, 3.3V (typ.)
14	NC V. CND	No Connection
15	H_GND	Ground
16	H_GND	Ground
17	HPD	Hot Plug Detect Output
18	BL_GND	LED Ground
19	BL_GND	LED Ground
20	BL_GND	LED Ground
21	BL_GND	LED Ground
22	BL_ENABLE	LED Enable Pin(+3.3V Input)
23	BL_PWM	System PWM Signal Input
24	NC	No Connection
25	NC	No Connection
26	BL_POWER	LED Power Supply 5V-21V
27	BL_POWER	LED Power Supply 5V-21V
28	BL_POWER	LED Power Supply 5V-21V
29	BL_POWER	LED Power Supply 5V-21V
30	NC	No Connection

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	16 OF 64

DAS-RD-2019007-A

5.2 eDP Interface

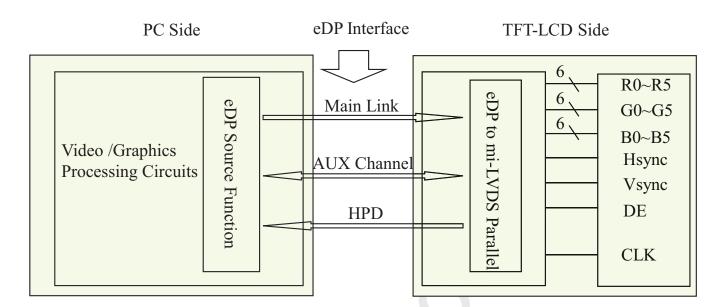


Figure 12. eDP Interface Architecture

Note:

Transmitter: Parade DP501 or equivalent.

Transmitter is not contained in module.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	17 OF 64

5.3 Data Input Format

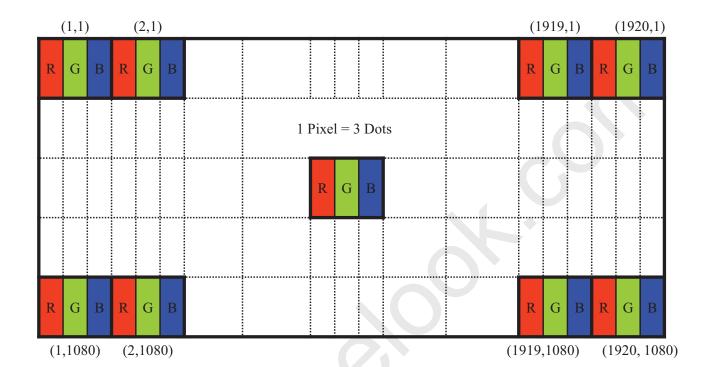


Figure 13. Display Position of Input Data (V-H)

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	18 OF 64

5.4 Back-light & LCM Interface Connection

BLU Interface Connector: STM MSK24022P10.

<Table 7. Pin Assignments for the BLU Connector>

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	LED	LED cathode connection	6	GND	Ground
2	LED	LED cathode connection	7	NC	No Connection
3	LED	LED cathode connection	8	Vout	LED anode connection
4	LED	LED cathode connection	9	Vout	LED anode connection
5	NC	No Connection	10	Vout	LED anode connection

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

PAGE

19 OF 64

DAS-RD-2019007-A

6.0 SIGNAL TIMING SPECIFICATION

6.1 The NV156FHM-N4X V8.0 Is Operated By The DE Only

< Table 8. Signal Timing Specification >

Item		Symbols	Min	Тур	Max	Unit
Clock	Frequency	1/Tc	139.9	149.6	162.8	MHz
			1100	1140	1180	lines
Fr	rame Period	Tv	-	60	-	Hz
			-	16.67	-	ms
Vertical Display Period		Tvd	-	1080	-	lines
One line Scanning Period		Th	2120	2187	2300	clocks
Horizontal Display Period		Thd		1920	-	clocks

Note: The above is as optimized setting.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	20 OF 64

DAS-RD-2019007-A

6.2 eDP Rx Interface Timing Parameter

The specification of the eDP Rx interface timing parameter is shown in Table 9.

<Table 9. eDP Main-Link RX TP4 Package Pin Parameters>

Item	Symbol	Min	Тур	Max	Unit	Remark
Spread spectrum clock (Link clock down-spreading)	ssc	0	-	0.5	%	
Differential peak-to-peak input voltage at package pins	VRX-DIFFp-p	100	-	1320	mV	
Rx input DC common mode voltage	VRX_DC_CM	0	-	2	V	
Differential termination resistance	Rrx-diff	80	1	120	Ω	
Single-ended termination resistance	RRX-SE	40	-	60	Ω	
Rx short circuit current limit	IRX_SHORT		-	50	mA	
Intra-pair skew at Rx package pins (HBR) RX intra-pair skew tolerance at HBR	LRX_SKEW_ INTRA_PAIR		-	60	ps	
AC Coupling Capacitor	CSOURCE_ML	75		200	nF	Source side

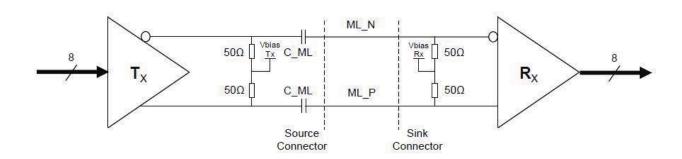


Figure 14. Main link differential pair

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	21 OF 64

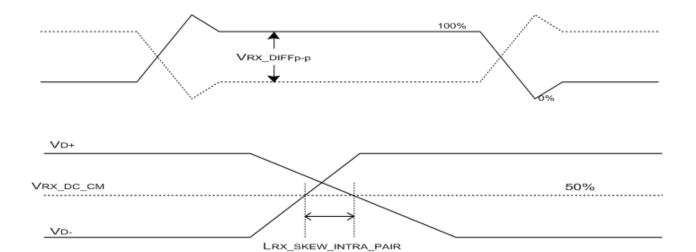


Figure 15. VRX-DIFFp-p & LRX_SKEW_INTRA_PAIR

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	22 OF 64

DAS-RD-2019007-A

<Table 10. HPD Characteristics>

Item	Symbol	Min	Тур	Max	Unit	Remark
HPD voltage	Vhpd	2.25	-	3.6	V	
Hot Plug Detection Threshold	-	2.0	-	-	V	Source side Detecting
Hot Unplug Detection Threshold	-	-	-	0.8V	V	Source side Detecting
HPD_IRQ Pulse Width	HPD_IRQ	0.5	-	1	ms	
HPD_TimeOut	-	2.0	-	-	ms	

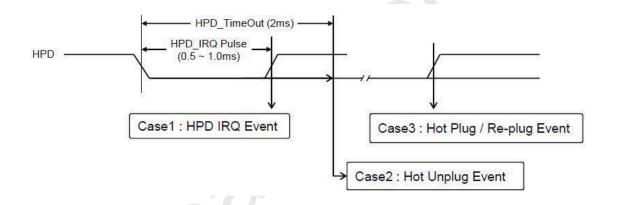


Figure 16. HPD Events

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	23 OF 64

DAS-RD-2019007-A

<Table 11. AUX Characteristics>

Item	Symbol	Min	Тур	Max	Unit	Remark
AUX unit interval	UIAUX	0.4	0.5	0.6	Us	
AUX peak-to-peak input differential voltage	VAUX-RX-D IFFp-p	0.29	-	1.38	V	
AUX CH termination DC resistance	RAUX-TER M	80	100	120	Ohm	
AUX DC common mode voltage	VAUX-DC-C M	0	-	2	V	
AUX turn around common mode voltage	VAUX-TUR N-CM	-		0.3	V	
AUX short circuit current limit	IAUX-SHOR T	-		90	mA	
AUX AC Coupling Capacitor	CSOURCE-A UX	75	-	200	nf	Source side

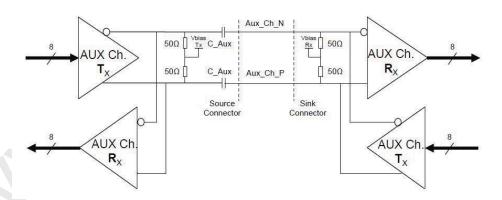


Figure 17. AUX differential pair

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	24 OF 64

DAS-RD-2019007-A

7.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

< Table 12. Input Signal & Basic Display Colors & Gray Scale of Colors >

	Colors &		Data signal	
	Gray scale	R0 R1 R2 R3 R4 R5	G0 G1 G2 G3 G4 G5	B0 B1 B2 B3 B4 B5
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
	Blue	0 0 0 0 0 0	0 0 0 0 0 0	1 1 1 1 1 1
Basic	Green	0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0 0
colors	Light Blue	0 0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1 1
	Red	1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0
	Purple	1 1 1 1 1 1	0 0 0 0 0 0	1 1 1 1 1 1
	Yellow	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0 0
	White	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
	Δ	1 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
	Darker	0 1 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
Gray scale	Δ	1	1	<u> </u>
of Red	∇	<u></u>		<u> </u>
	Brighter	1 0 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0
	∇	0 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0
	Red	1 1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
		0 0 0 0 0 0	1 0 0 0 0 0	0 0 0 0 0 0
	Darker	0 0 0 0 0 0	0 1 0 0 0 0	0 0 0 0 0
Gray scale of Green	∇	\downarrow	\downarrow	↑ ↓
	Brighter	0 0 0 0 0 0	1 0 1 1 1 1	0 0 0 0 0 0
	∇	0 0 0 0 0 0	0 1 1 1 1 1	0 0 0 0 0 0
	Green	0 0 0 0 0 0	1 1 1 1 1 1	0 0 0 0 0 0
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
	Δ	0 0 0 0 0 0	0 0 0 0 0 0	1 0 0 0 0 0
	Darker	0 0 0 0 0 0	0 0 0 0 0	0 1 0 0 0 0
Gray scale	\triangle	<u> </u>	+	<u> </u>
of Blue		V	1	4 0 4 4 4
	Brighter	0 0 0 0 0 0	0 0 0 0 0 0	1 0 1 1 1 1
	Blue	0 0 0 0 0 0	0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Black	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
Gray	△	1 0 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0 0
scale	Darker	0 1 0 0 0 0	0 1 0 0 0 0	0 1 0 0 0 0
of	Δ		↑	^
White	∇		<u> </u>	
&	Brighter	1 0 1 1 1 1	1 0 1 1 1 1	1 0 1 1 1 1
Black		0 1 1 1 1 1	0 1 1 1 1 1	0 1 1 1 1 1
Diack	White	1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	25 OF 64

DAS-RD-2019007-A

 $0.5 \text{ms} \leq T17$

 $0.5 \text{ms} \leq T18$

8.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below.

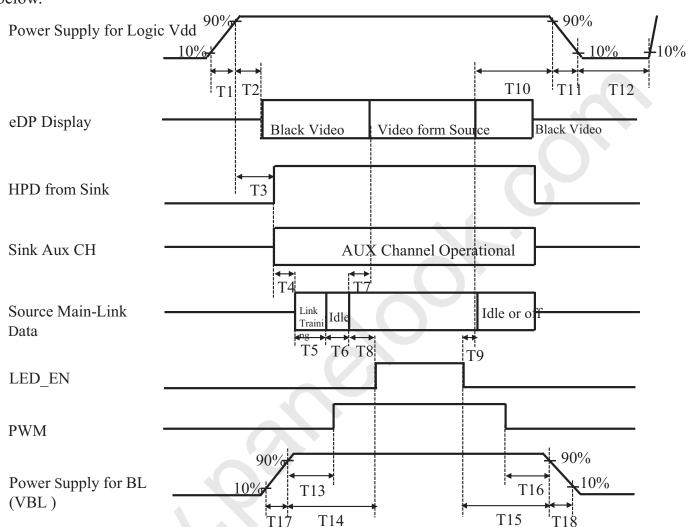


Figure 18. Power Sequence

- $0.5 \text{ms} \leq T1$ ≤ 10 ms
- 0ms < T2 \leq 200 ms
- $< T3 \le 200 \,\mathrm{ms}$
- T4+T5+T6+T8>80ms
- $0 \text{ms} < \text{T7} \leq 50 \text{ms}$
- 50ms < T8
- 0ms< T9

- $< T10 < 500 \, \text{ms}$ 0ms
- $0.5 \text{ms} \leq \text{T11} \leq 10 \text{ ms}$

< T16

- $500 \text{ms} \leq T12$
- < T13 0 ms
- < T14 0 ms
- < T15 0ms

Notes:

- 1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance.
- 2. Do not keep the interface signal high impedance when power is on. Back Light must be turn on after power for logic and interface signal are valid.

0 ms

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	26 OF 64
DAO DD 0010007 A	*	1 4 (0 1 0 37 0 0 7)

9.0 Connector Description

Physical interface is described as for the connector on LCM.

These connectors are capable of accommodating the following signals and will be following components.

9.1 TFT LCD Module

< Table 13. Signal Connector >

Connector Name /Description	For Signal Connector
Manufacturer	STM
Type/ Part Number	MSAK24025P30
Mating Housing/ Part Number	I-PEX 20454-030T

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	27 OF 64

10.0 MECHANICAL CHARACTERISTICS

10.1 Dimensional Requirements

Figure 23shows mechanical outlines for the model NV156FHM-N4X V8.0. Other parameters are shown in Table 14.

<Table 14. Dimensional Parameters>

Parameter	Specification	Unit
Active Area	344.16 (H) ×193.59 (V)	mm
Number of pixels	1920 (H) X 1080 (V) (1 pixel = R + G + B dots)	pixels
Pixel pitch	179.25 (H) X 179.25 (V)	um
Pixel arrangement	RGB Vertical stripe	
Display colors	262K(6bit)	
Display mode	Normally Black	
Dimensional outline	350.66 ± 0.3 (H)* 205.78 ± 0.3 (V)(W/O PCB)* 3.2 (Max) 350.66 ± 0.3 (H)* 216.15 ± 0.5 (V) (W/PCB)* 3.2 (Max	mm
Weight	370 (max)	g

10.2 Mounting

See Figure 23.

10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an Anti-Glare coating with 3H hardness to minimize reflection and reduce scratching.

10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 350lux.

STECTION SEED SEED SEED SEED SEED SEED SEED SEE	SPEC. NUMBER	SPEC. TITLE	PAGE
NV156FHM-N4X V8.0 Product Specification Rev. 0	Si Le. Noviblic		28 OF 64

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. 0	2021.07.19

11.0 RELIABILITY TEST

The reliability test items and its conditions are shown in below. <Table 15. Reliability Test>

No	Test Items	Conditions	Remark
1	High temperature storage test	$Ta = 60^{\circ}C$, $60\%RH$, 240 hrs	
2	Low temperature storage test	$Ta = -20^{\circ}C$, 240 hrs	
3	High temperature & high humidity operation test	Ta = 50°C, 80%RH, 240 hrs	
4	High temperature operation test	$Ta = 50^{\circ}C$, $60\%RH$, 240 hrs	
5	Low temperature operation test	Ta = 0°C, 240 hrs	
6	Thermal shock	Ta = -20 °C \leftrightarrow 60 °C (0.5 hr), 60% \pm 3%RH, 100 cycle	
7	Vibration test (non-operating)	Ta = 25°C, 60%RH, 1.5G, 10~500Hz, Sine X,Y,Z / Sweep rate : 1 hour	Note 1
8	Shock test (non-operating)	Ta = 25°C, 60%RH, 220G, Half Sine Wave 2msec \pm X, \pm Y, \pm Z Once for each direction	Note 1
9	Electro-static discharge test (operating)	Air : 150 pF, 330Ω, \pm 15 KV Contact : 150 pF, 330Ω, \pm 8 KV	Note 2

Notes:

- 1. The fixture must be hard enough , so that the module would not be twisted or bent.
- 2. Self- recovery and restart recovery is allowed. No hardware failures.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	29 OF 64

12.0 HANDLING & CAUTIONS

- (1) Cautions when taking out the module
 - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
 - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
 - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - Do not pull the interface connector in or out while the LCD module is operating.
 - Put the module display side down on a flat horizontal plane.
 - Handle connectors and cables with care.
- (3) Cautions for the operation
 - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
 - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- (4) Cautions for the atmosphere
 - Dew drop atmosphere should be avoided.
 - Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
 - Do not apply fixed pattern data signal to the LCD module at product aging.
 - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
 - Do not disassemble and/or re-assemble LCD module.
 - Do not re-adjust variable resistor or switch etc.
 - When returning the module for repair or etc. Please pack the module not to be broken. We recommend to use the original shipping packages.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	30 OF 64

13.0 LABEL

(1) Product Label

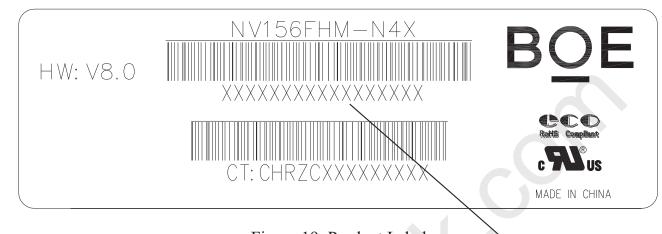


Figure 19. Product Label

Module ID Naming Rule:

<Table 16. Module ID Naming Rule>

Digit Code	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Code	В	9	A	F	1	7	8	8	D	3	1	0	0	0	0	6	8
Description		oduct ame	Product Grade	В8	Ye	ear	Month	G			on Code FG CODE)		0	Seria 0001-Z	l No. ZZZZZ	Z	

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

PAGE

31 OF 64

DAS-RD-2019007-A

(2) High voltage caution label

HIGH VOLTAGE CAUTION

RISK OF ELECTRIC SHOCK, DISCONNECT THE ELECTRIC POWER BEFORE SERVICING COLD CATHODE FLUORESCENT LAMP IN LCD
PANEL CONTAINS A SMALL AMOUNT

OF MERCURY, PLEASE FOLLOW LOCAL ORDINANCES OR REGULATIONS FOR DISPOSAL.

Figure 20. High Voltage Caution Label

(3) Box label

Figure 21. Box Label

Serial number marked part needs to print, show as follows:

- 1. FG-CODE(Before 12 bit)
- 2. Product quantity

3. Box ID

- 4. Date
- 5. The client section material number(The client)
- 6. FG-Code After four
- 7. The supplier code

Total Size:100×50mm

<Table 17. Box Label Naming Rule >

	Digit Code	1	2	3	4	5	6	7	8	9	10	11	12	13
	Code	В	9	A	F	1	7	8	N	0	0	3	2	7
Ι	Description	Proc		Product Grade	В8	Year		Month	Revision	BOX Serial Number				

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	OF 64

14.0 PACKING INFORMATION

14.1 Packing Order

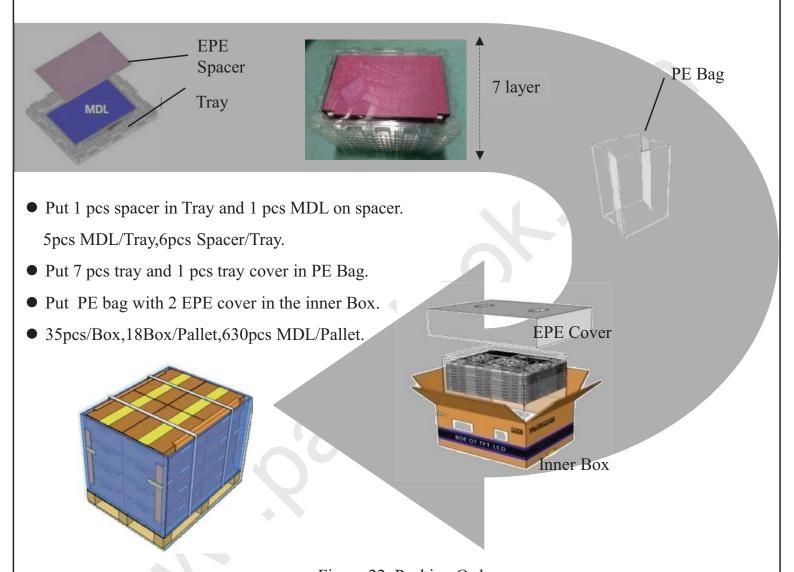


Figure 22. Packing Order

14.2 Note

- Box dimension: 480mm*350mm*285mm
- Package quantity in one box: 35pcs
- Total weight: 15.7kg/Box (Typ.)

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	33 OF 64
040 00 0010007 4	*	A 4(010 TZ 007)

15.0 MECHANICAL OUTLINE DIMENSION

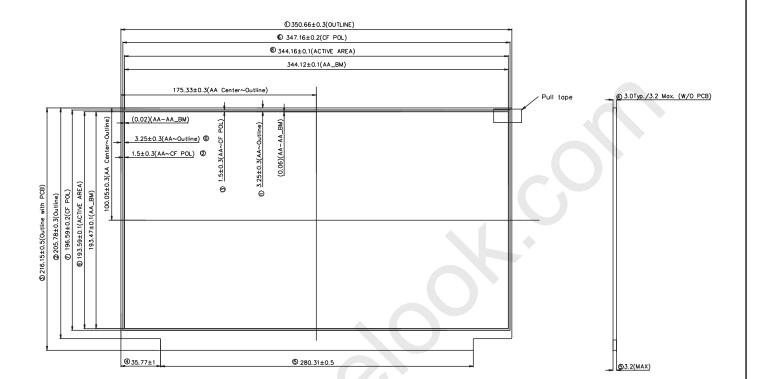


Figure 23. TFT-LCD Module Outline Dimension (Front View)

Notes:

- 1. The eDP connector is measured at PIN 1 and mating line.
- 2. Unspecified tolerance refer to ± 0.3 mm.
- 3. Top polarizer is the highest portion.
- 4. Critical dimension: \bigcirc ~ \bigcirc CPK: \bigcirc ~ \bigcirc
- 5. Do not have light leakage on four corners of module.
- 6. "()" marks the reference dimensions.

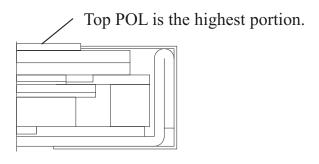


Figure 24. Highest Point Position

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	34 OF 64

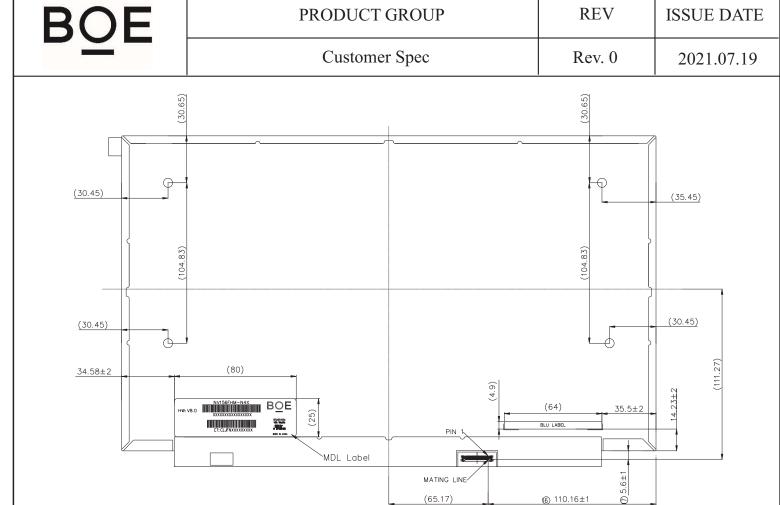


Figure 25. TFT-LCD Module Outline Dimensions (Rear view)

(65.17)

Notes:

- 1. The eDP connector is measured at PIN 1 and mating line.
- 2. Unspecified tolerance refer to ± 0.3 mm.
- 3. Top polarizer is the highest portion.
- 4. Critical dimension: \bigcirc ~ \bigcirc CPK: \bigcirc ~ \bigcirc
- 5. Do not have light leakage on four corners of module.
- 6. "()" marks the reference dimensions.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	35 OF 64
DAS-RD-2019007-A	*	A4(210 X 297)

PRODUCT GROUP	REV	ISSUE DATE
Customer Spec	Rev. 0	2021.07.19

16.0 EDID Table

Address (HEX)	Function	Hex	Dec	crc	Input values.	Notes
00		00	0		0	
01		FF	255		255	
02		FF	255		255	
03		FF	255		255	FDID Hands
04	Header	FF	255		255	EDID Header
05		FF	255		255	
06		FF	255		255	
07		00	0		0	
08	ID Manufacturer	09	9		DOE	TD DOE
09	Name	E5	229		BOE	ID = BOE
0A	ID D and all Condo	CA	202		2506	ID 2500
0B	ID Product Code	09	9		2506	ID = 2506
0C		00	0		0	
0D	32 kil a sial Na	00	0		0	
0E	32-bit serial No.	00	0		0	
0F		00	0		0	
10	Week of manufacture	11	17		17	
11	Year of Manufacture	1E	30		2020	Manufactured in 2020
12	EDID Structure Ver.	01	1		1	EDID Ver 1.0
13	EDID revision #	04	4		4	EDID Rev. 0.4
14	Video input definition	95	149		-	Refer to right table
15	Max H image size	22	34		34	34.4 cm (Approx)
16	Max V image size	13	19		19	19.4 cm (Approx)
17	Display Gamma	78	120		2.2	Gamma curve = 2.2
18	Feature support	03	3		-	Refer to right table
19	Red/Green low bits	28	40		-	Red / Green Low Bits
1A	Blue/White low bits	65	101		-	Blue / White Low Bits
1B	Red x high bits	96	150	601	0.587	Red $(x) = 10010110 (0.587)$
1C	Red y high bits	5E	94	378	0.369	Red $(y) = 01011110 (0.369)$
1D	Green x high bits	5B	91	365	0.356	Green $(x) = 01011011 (0.356)$
1E	Green y high bits	91	145	582	0.568	Green $(y) = 10010001 (0.568)$
1F	Blue x high bits	28	40	163	0.159	Blue (x) = 00101000 (0.159)
20	BLue y high bits	20	32	128	0.125	Blue (y) = 00100000 (0.125)
21	White x high bits	50	80	321	0.313	White $(x) = 01010000 (0.313)$
22	White y high bits	54	84	337	0.329	White $(y) = 01010100 (0.329)$
23	Established timing 1	00	0		-	
24	Established timing 2	00	0		-	Refer to right table
25	Established timing 3	00	0		-	_

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

PAGE

36 OF 64

DAS-RD-2019007-A

B	OE	PRODUCT GROUP				REV	ISSUE	E DATE	
	—			Custom	ner Spec		Rev. 0	2021	1.07.19
26 27	Standard timing #1	01 01	1 1				Not Used		
28	Standard timing	01	1				Nahilaad		
29	#2	01	1				Not Used		
2A	Standard timing	01	1				Not Used		
2B	#3	01	1				Not osed		
2C	Standard timing	01	1				Not Used		
2D	#4	01	1				Not osed		
2E	Standard timing	01	1				Not Used		
2F	#5	01	1				Not osed		
30	Standard timing	01	1				Not Used		
31	#6	01	1				Not osed		
32	Standard timing	01	1				Not Used		
33	#7	01	1				Not osed		
34	Standard timing	01	1			Not Used			
35	#8	01	1				1400 0300		
36		70	112		149.6	149.5908MHz Main clock	•		
37		3A	58		115.0	113.3.			
38		80	128		1920	Но	r Active = 1920		
39		0B	11		267		Blanking = 267		
3A		71	113		-		r. Active + 4 bits o Blanking	of Hor.	
3B	_	38	56		1080	+	r Active = 1080		
3C		3C	60		60		r Blanking = 60	£ \ /	
3D	Detailed	40	64		-		r. Active + 4 bits o	or ver.	
3E	Detailed timing/monitor	30	48		48		Sync Offset = 48		
3F	descriptor #1	20	32		32	'	c Pulse Width = 32	2	
40		36	54		3	· · · · · ·	nc Offset = 3 line		
41	_	00	0		6		Pulse width : 6 lin		
42		58	88		344		age Size = 344 mn bits)		
43		C2	194		194		ge Size = 194 mm bits)		
44		10	16		-	4 bits of Hor	Image Size + 4 bit Image Size	s of Ver	
45	_	00	0		0	Ног	r Border (pixels)		
46	_	00	0		0		cal Border (Lines)		
47		1A	26		-	Ref	fer to right table		
	I								

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

7 OF 64

DAS-RD-2019007-A

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. 0	2021.07.19

48 49					
49		F5	245		
		26	38	99.7	99.7272MHz Main clock
4A		80	128	1920	Hor Active = 1920
4B		0B	11	267	Hor Blanking = 267
4C		71	113	-	4 bits of Hor. Active + 4 bits of Hor. Blanking
4D		38	56	1080	Ver Active = 1080
4E		3C	60	60	Ver Blanking = 60
4F		40	64	-	4 bits of Ver. Active + 4 bits of Ver. Blanking
50	Detailed	30	48	48	Hor Sync Offset = 48
51	timing/monitor	20	32	32	H Sync Pulse Width = 32
52	descriptor #2	36	54	3	V sync Offset = 3 line
53		00	0	6	V Sync Pulse width: 6 line
54		58	88	344	Horizontal Image Size = 344 mm (Low 8 bits)
55		C2	194	194	Vertical Image Size = 194 mm (Low 8 bits)
56		10	16	-	4 bits of Hor Image Size + 4 bits of Ver Image Size
57		00	0	0	Hor Border (pixels)
58		00	0	0	Vertical Border (Lines)
59		1A	26	-	Refer to right above table
5A		00	0		
5B		00	0		
5C		00	0		
5D		00	0		
5E		00	0		1
5F		00	0		
60		00	0		7
61		00	0		Nvidia nvDPS
62	Detailed	00	0		(Refer the tab of nvDPS)
63	timing/monitor descriptor #3	00	0		Lowest refresh rate that does not cause
64	descriptor #3	00	0		any visual/optical side effect
65		00	0]
66		00	0		
67		00	0		
68		00	0		
69		00	0		
6A		00	0		
6B]	00	0		

SPEC. NUMBER SPEC. TITLE

NV156FHM-N4X V8.0 Product Specification Rev. 0

PAGE
38 OF 64

DAS-RD-2019007-A

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. 0	2021.07.19

6C		00	0		Detailed Timing Description #4
6D		00	0		Flag
6E		00	0		Reserved
6F		02	2		For Brightness Table and Power consumption
70		00	0		Flag
71		0B	11		- PWM % [7:0] @ Step 0
72		40	64		- PWM % [7:0] @ Step 5
73		FF	255		- PWM % [7:0] @ step 10
74	Detailed	0A	10		- Nits [7:0] @ Step 0
75	timing/monitor	3C	60		- Nits [7:0] @ Step 5
76	descriptor #4	7D	125		- Nits [7:0] @ Step 10
77		16	22		Panel Electronics Power @32x32 Chess Pattern = 900mW
78		13	19		Backlight Power @60 nits = 762.35294117647mW
79		25	37		- Backlight Power @Step 10 = 3000mW
7A		7D	125		- Nits @ 100% PWM Duty = 250nit
7B		00	0		Format :
7C		00	0		terminate with ASCII code 0Ah
7D		00	0		and pad field with ASCII code 20h
7E	Extension flag	00	0		1 0:1個EDID; N-1: N个EDID
7F	Checksum	32	50	50	-

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

9 OF 64

DAS-RD-2019007-A

17.0 GENERAL PRECAUTIONS

17.1 HANDLING

- (1) When the module is assembled, It should be attached to the system firmly using every mounting holes.
- Be careful not to twist or bend the modules.
- (2) Refrain from strong mechanical shock or any force to the module. Otherwise, it may cause improper operation or damage to the module.
- (3) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than 1 HB pencil lead.
- (4) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (5) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (6) The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage to the polarizer due to chemical reaction.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth .In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static, it may cause damage to the module.
- (9) Use fingerstalls with soft gloves to keep display clean during the incoming inspection and assembly process.
- (10) Do not disassemble the module.
- (11) Do not pull or fold the LED FPC.
- (12) Do not touch any component which is located on the back side.
- (13) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (14) Pins of connector shall not be touched directly with bare hands.

17.2 STORAGE

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35° C and relative humidity of less than 70%.
- (2) Do not store the TFT-LCD module in direct sunlight.
- (3) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	40 OF 64

DAS-RD-2019007-A

17.3 OPERATION

- (1) Do not connect, disconnect the module in the "Power On" condition.
- (2) Power supply should always be turned on/off by following item 8.0 " Power on/off sequence ".
- (3) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (4) The standard limited warranty is only applicable when the module is used for general notebook applications. If used for purposes other than as specified, BOE is not to be held reliable for the defective operations. It is strongly recommended to contact BOE to find out fitness for a particular purpose.

17.4 OTHERS

- (1) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (2) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, Variation in part contents and environmental temperature, so on) Otherwise the module may be damaged.
- (3) If the module displays the same pattern continuously for a long period of time, it can be the situation when The "image sticks" to the screen.
- (4) This module has its circuitry PCB's on the rear or bottom side and should be handled carefully to avoid being stressed.

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

41 OF 64

DAS-RD-2019007-A

BOE	PRODUCT GROUP	REV	ISSUE DATE
	Customer Spec	Rev. 0	2021.07.19

Appendix A

The Measurement Methods for the Dimensions of Module

Caliper:

- a. Length of Outline
- b. Width of Outline (Without/With PCB)
- c. Thickness of Outline (Without/ With PCB)

Coordinate Measuring Machine:

CF Polarizer Size

Active Area Size

Active Area to Outline (Without Tape Wrinkle or Bulged)

Active Area to CF Polarizer

The Distance of Bracket Holes

P-Cover to Outline (Without Tape Wrinkle or Bulged)

Length of P-Cover

Connector Pin 1 to Outline (Without Tape Wrinkle or Bulged)

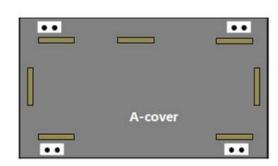
Height Gauge: The Different Height of Root and Top on the Bracket

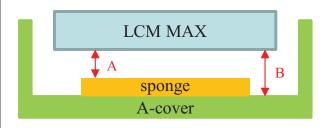
(Need to Calculate From Bracket Angle Spec.)

Feeler Gauge: The Warpage Spec. of Module

Notes:


Except the Critical Dimensions as Above, Other Dimensions are Measured by Coordinate Measuring Machine If Necessary.


SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	42 OF 64



LCM to A-Cover / sponges z-gap

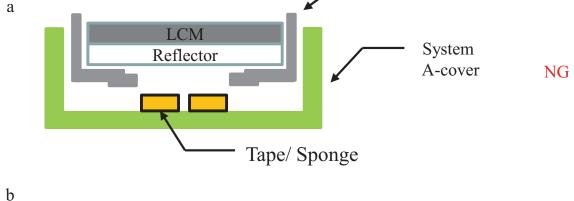
	Plastic Cover (LCM Thickness: Max)	Metal Cover (LCM Thickness: Max)		
A	>0mm	>0mm		
В	Min: 1.0mm	Min: 0.8mm		
Without the open area of back cover				

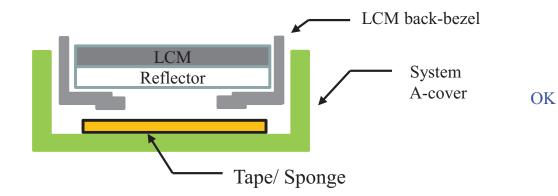
Purpose

The reflector area is very sensitive, we suggest that design enough z-gap to decrease the risk of water ripple, white spot and other abnormal display

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0


43 OF 64


DAS-RD-2019007-A

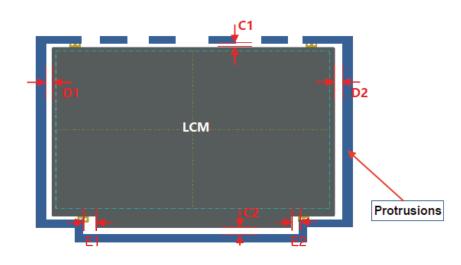
LCM to A-Cover / sponges z-gap

Purpose

If attach sponges or rubbers which correspond to white reflector area, it may cause white spot, pooling or other relate issues. We suggest that attach wide range sponges / rubbers which can cover the LCM back-bezel opening

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

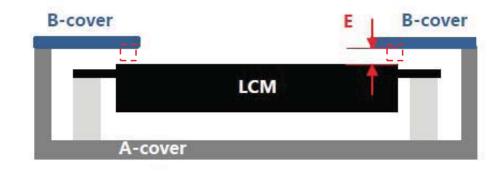

44 OF 64

DAS-RD-2019007-A

LCM to side wall / protrusions

	Normal border	Narrow border			
D1/D2	Min: 0.45mm	Min: 0.35mm			
C1	Min: 0.50mm				
C2	Min: 0.50mm				
E1/E2	Min: 0.55mm				

Purpose


We suggest that design enough gap around LCM to prevent shock test failure, or interference, cell crack, abnormal display...etc. in the reliability test

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	45 OF 64

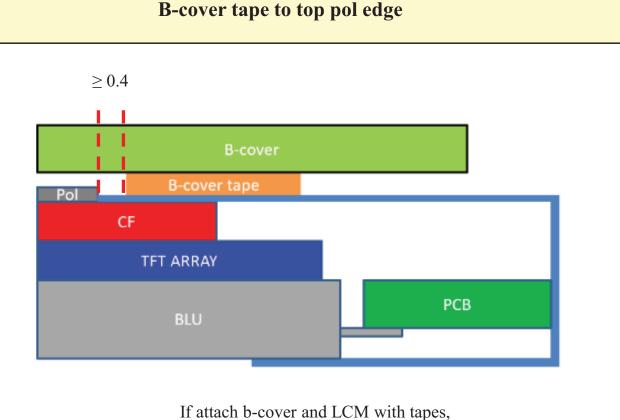
LCM to B-cover z-gap

B-cover Tape	Gap
Without	0.15 ~ 0.25mm
With	$0.15 \sim 0.20$ mm

Purpose

Too less z-gap between system B-cover and LCM top pol has high risk to cause cell crack, pooling, light leakage and other issues

SPEC. NUMBER SPEC. TITLE PAGE


NV156FHM-N4X V8.0 Product Specification Rev. 0

46 OF 64

DAS-RD-2019007-A

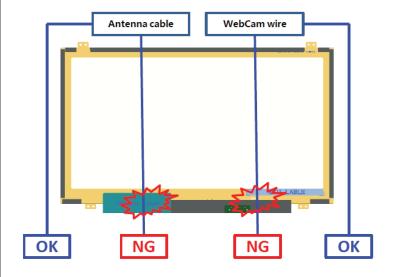
Please let tapes to be located out of top pol edges 0.4mm away on 4 sides

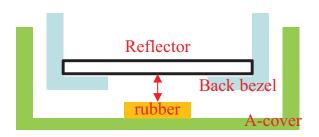
Purpose

To avoid the B-cover tape override top pol and cause pooling or light leakage issue

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0


47 OF 64


DAS-RD-2019007-A

Antenna Cable & Webcam wire

If sponge within the reflector area is necessary, we suggest that the gap b etween reflector and sponge is more than 0.5mm

Purpose

- 1. We suggest that do not set Antenna or WebCam cable / wire go behind LCM to avoid backpack test, hinge test ,twist test or pogo test with abnormal display
- 2. If the cable / wire is necessary to go behind LCM, please make a groove with rounds or chamfers to protect the cable / wire, or attach with higher sponge / rubbers adjacent to the cable / wire route
- 3. Suggest that attach the cable / wire with tapes to A-cover
- 4. Do not attach anything with LCM reflector area. If attach cable / wire with LCM reflector area, it may cause pooling, white spot, light leakage and other related issues

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	48 OF 64

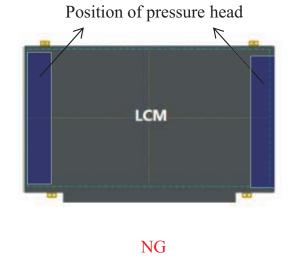
DAS-RD-2019007-A

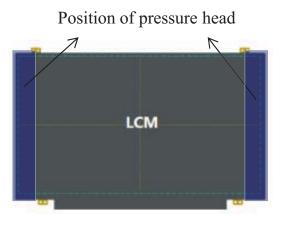
LCM paste area

Attachment area

Purpose

If use the stretch remove tapes to fix LCM with A-cover, please set the stretch remove tapes correspond to the LCM back-bezel and do not let the tapes override the backbezel's level step of opening


SPEC. NUMBER SPEC. TITLE 49 OF 64 NV156FHM-N4X V8.0 Product Specification Rev. 0


PAGE

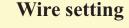
LCM pressable area

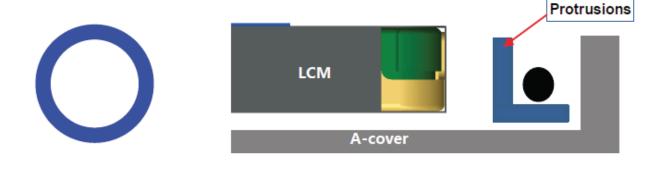
OK

Purpose

- 1. LCM is fixed on A-cover by double-sided tap which can stick LCM after using the press jig stress LCM during assembling.
- 2. To avoid panel broken the design of pressure head of press jig can not only pin on cell panel. The pressure head needs to pin on the LCM frame, which the LCM frame can share the pressure of the pressing head.

SPEC. NUMBER SPEC. TITLE PAGE


NV156FHM-N4X V8.0 Product Specification Rev. 0

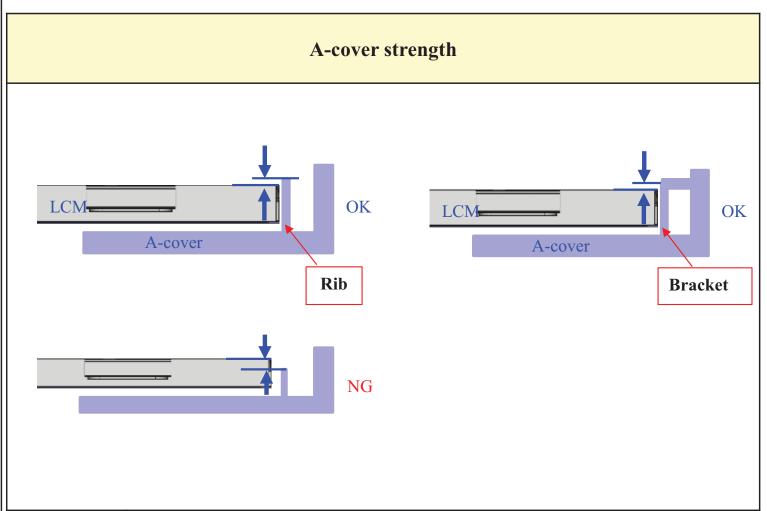

50 OF 64

DAS-RD-2019007-A

Purpose

Wire should be placed between Protrusions and A-cover. If place the wire between LCM and Protrusions, it may interfere with LCM when assembling B-covers, or even cause LCM breakage in reliability test.

SPEC. NUMBER


SPEC. TITLE

NV156FHM-N4X V8.0 Product Specification Rev. 0

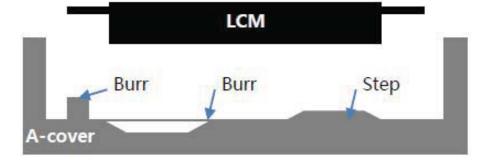
PAGE 51 OF 64

Purpose

- 1. It is recommended that Rib height is higher than LCM, in order to avoiding press on LCM edge panels.
- 2. As for LCM is more stronger than Rib, the L Bracket is be recommended.

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0


52 OF 64

DAS-RD-2019007-A

System A-cover Inner Surface

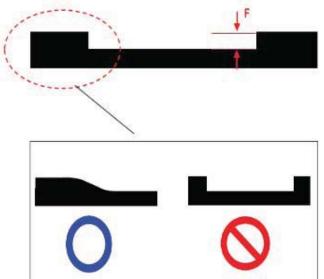
Purpose

There should not exist any burr, segment gap or protrusions beside Logo, which would cause White Spot or Glass Broken by stress concentration.

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

53 OF 64


DAS-RD-2019007-A

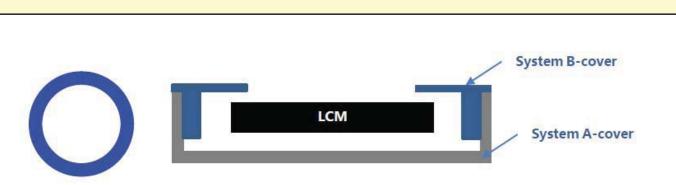
Keyboard area & Mouse pad

► F: max 0.3mm

Purpose

In order to avoiding LCM fragments in reliability test, the step surface of Keyboard and Mouse pad transmits smoothly, and should not be right-angle. For example, when Pogo testing, if the broken hole is done in this location, it is easy to produce fragments.

SPEC. NUMBER SPEC. TITLE PAGE


NV156FHM-N4X V8.0 Product Specification Rev. 0

54 OF 64

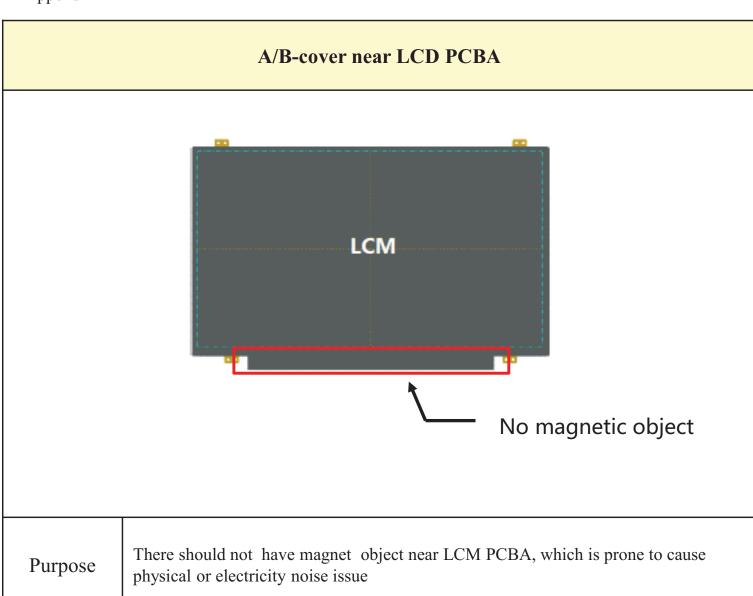
DAS-RD-2019007-A

System cover reliability

Purpose

The permanent deformation part of System cover after the reliability test, including sponge and other structures or components, can not touch LCM.

SPEC. NUMBER SPEC. TITLE PAGE

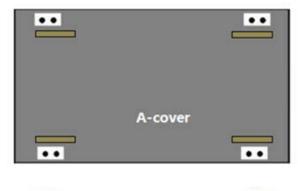

NV156FHM-N4X V8.0 Product Specification Rev. 0

55 OF 64

DAS-RD-2019007-A

SPEC. NUMBER

SPEC. TITLE


NV156FHM-N4X V8.0 Product Specification Rev. 0


PAGE 56 OF 64

A-cover add sponges on Boss side wall

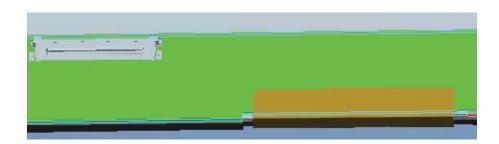
Purpose

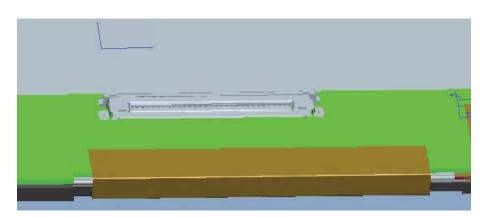
We suggest to attach Sponges to the side of the Boss column of A-cover to reduce the panel broken possibility in assembly. It is recommended to this design synchronously.

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0

57 OF 64


DAS-RD-2019007-A



LCM to A-Cover / sponges z-gap

Purpose

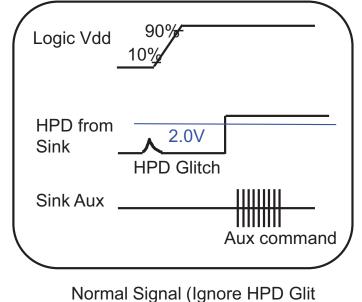
Bent product: The position of system connector and FPC should be staggered in X direction. Otherwise, when testing, the system Cable line extrudes FPC, leading to FPC Crack; (Panel FPC Bonding location is related to Mask and can not be changed easily)

SPEC. NUMBER

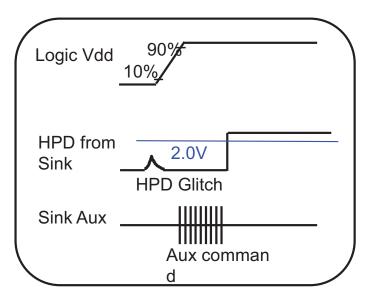
SPEC. TITLE

J.

NV156FHM-N4X V8.0 Product Specification Rev. 0


PAGE 58 OF 64

DAS-RD-2019007-A A4(210 X 297)



HPD Signal recognition

ch)

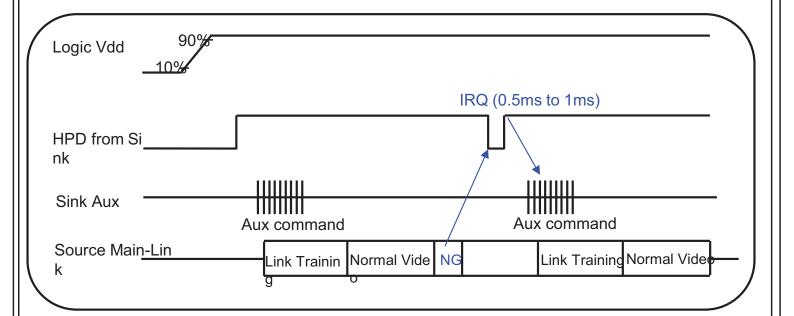
Abnormal Signal

Purpose

DAS-RD-2019007-A

When HPD glitch of source device minimum is 2.0(V).

SPEC. NUMBER SPEC. TITLE


PAGE 59 OF 64

NV156FHM-N4X V8.0 Product Specification Rev. 0

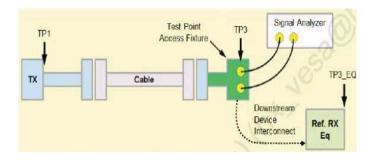
HPD Signal Definition IRQ (Interrupt Request)

Purpose

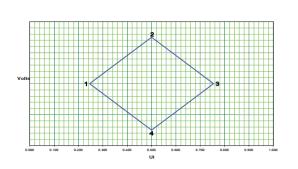
When HPD signal low than 0.5ms to 1ms, the source device should check sink status field from the DPCD and take link training again.

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0


60 OF 64

DAS-RD-2019007-A


Main link eye diagram of TP3

	UI	Voltage
1	0.246	0
2	0.5	0.075
3	0.755	0
4	0.5	-0.075

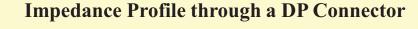
Eye for TP3 at HBR

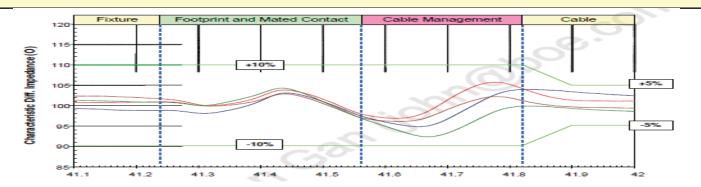
Downstream Device Mask at TP3

	UI	Voltage
1	0.375	0
2	0.5	0.023
3	0.625	0
4	0.5	-0.023

Eye for TP3 at RBR

Purpose


- 1. Main Link EYE Diagram should meet TP3 point of VESA.
- 2. The measure method is through access fixture.


SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	61 OF 64

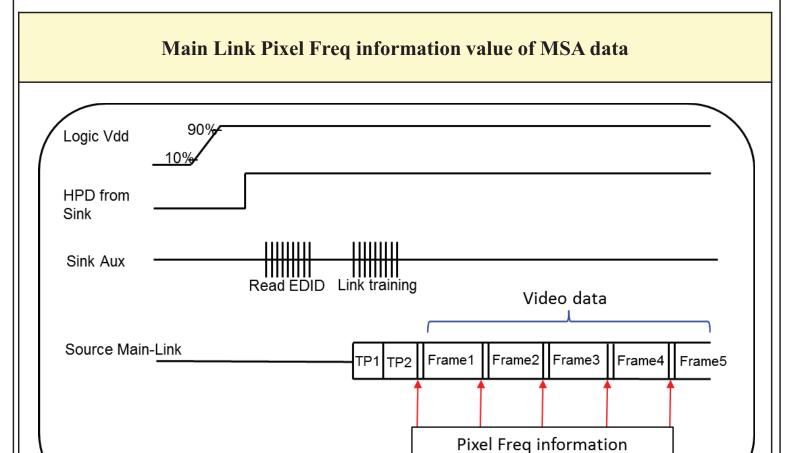
DAS-RD-2019007-A

Differential Impedance Profile Measurement Data Example

Segment	Differential Impedance Value	Maximum Tolerance
Fixture	100Ω/85Ω VESA	±10%
Connector	100Ω/85Ω VESA	±10%
Wire management	100Ω/85Ω VESA	±10%
Cable	100Ω/85Ω VESA	±5%

Impedance Profile Values for Cable Assembly

Purpose


Cable Impedance Profile 100ohm for Cable Assembly

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	62 OF 64

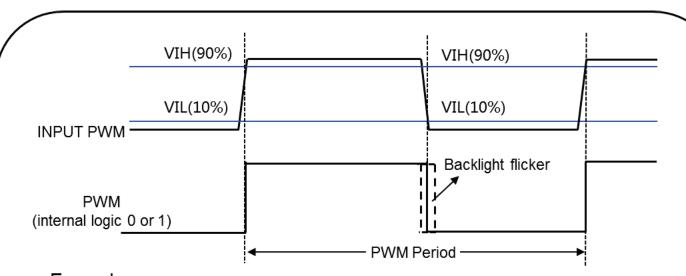
DAS-RD-2019007-A

Purpose

- 1. It need to fix pixel freq information value of MSA data output to prevent the initial abnormal pixel freq information value from incoming after power on.
- 2. BOE can read DPCD to check this value. Ex: BIOS is 1.62G, but into windows is 2.7G.

SPEC. NUMBER SPEC. TITLE PAGE

NV156FHM-N4X V8.0 Product Specification Rev. 0


63 OF 64

DAS-RD-2019007-A

Main Link Pixel Freq information value of MSA data

Example:

Freq	Cycle Time	PWM Rising Time	PWM Falling Time
200Hz	5ms	≤1us	≤1us
1KHz	1ms	≤200ns	≤200ns

Purpose

- 1. LED driver need to calculate the duty cycle of input PWM signal.
- 2. To avoid backlight flicker visible on LCD, system input PWM suggest : PWM rising \leq 200ppm*cycle time ; PWM falling \leq 200ppm*cycle time.

SPEC. NUMBER	SPEC. TITLE	PAGE
	NV156FHM-N4X V8.0 Product Specification Rev. 0	64 OF 64