



# **INDUSTRIAL DISPLAY MODULE**

# **SPECIFICATION**

**Customer Part Number:** 

**Tianma Part Number:** P0800WVF1MA00

**Product Description:** 8" 800xRGBx480 TFT-LCD Module

| L J   | rarget      | Specification |
|-------|-------------|---------------|
| [ • ] | Preliminary | Specification |
| [0]   | Final       | Specification |
|       |             |               |

| Customer   |      | Industrial Product Dep<br>Tianma Microelectronic |        |  |
|------------|------|--------------------------------------------------|--------|--|
| Signatures | Date | Approved By                                      | Date   |  |
|            |      | Product Leader                                   | 2021/3 |  |
|            |      | Reviewed By                                      |        |  |
|            |      | IPM / Product Manager                            | 2021/3 |  |
|            |      | Prepared By                                      |        |  |
| 111        |      | Xiao Ming Xu<br>FAE                              | 2020/3 |  |
| Comments:  |      |                                                  |        |  |
|            |      |                                                  |        |  |

Revision: 2.0 TIANMA MICROELECTRONICS CO., LTD ALL RIGHT RESERVED

<sup>\*</sup> This cover page is for your Comments and Signatures back to TIANMA.







# INDUSTRIAL DISPLAY MODULE

# **REVISION HISTORY**

| Revision | Date     | Page | Revision Items | Remark |
|----------|----------|------|----------------|--------|
| 1.0      | 2020/3/1 | -    | First Release  |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |
|          |          |      |                |        |

Revision: 2.0





## **INDUSTRIAL DISPLAY MODULE**

# **CONTENTS**

| 1.  | SUMMARY                                      | 1      |
|-----|----------------------------------------------|--------|
| 2.  | GENERAL SPECIFICATION                        | 1      |
|     |                                              |        |
| 3.  | INPUT / OUTPUT TERMINALS                     | 2      |
|     | 3.1 CN1 Pin assignment (LCD Interface)       |        |
|     | 3.2 CN2 Pin assignment (BL Interface)        |        |
| 4.  | ABSOLUTE MAXIMUM RATINGS                     | 3      |
| 5.  | ELECTRICAL CHARACTERISTICS                   |        |
| J.  |                                              |        |
|     | 5.1 DC Characteristics for Panel Driving     |        |
|     | 5.2 DC Characteristics for Backlight Driving | 4      |
|     | 5.4 LCD Module Block Diagram                 | ت<br>د |
|     | 5.4 LCD iviodule block Diagram               | C      |
| 6.  | INTERFACE TIMING CHARACTERISTICS             | 6      |
| 7.  | OPTICAL CHARACTERISTICS                      |        |
| 8.  | RELIABILITY TEST                             | 15     |
| 9.  | MECHANICAL DRAWING                           | 16     |
| J.  |                                              |        |
| 10. | PACKING INSTRUCTION                          | 17     |
| 11. | PRECAUTIONS FOR USE OF LCD MODULE            | 18     |
|     | 11.1 Handling Precautions                    |        |
|     | 11.2 Storage precautions                     |        |
|     | 11.3 Transportation Precautions              |        |
|     |                                              |        |

12.



#### INDUSTRIAL DISPLAY MODULE

# 1. Summary

This is a 8 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module with normal-black technology. It is composed of a TFT-LCD panel, LCD Driver IC with T-con integrated, PCB, and a LED backlight unit. This product is designed for automotive and other high reliability electronic products and complies with *RoHS* directive.

# 2. General Specification

| Items                             | Specification          | Remark |
|-----------------------------------|------------------------|--------|
| Diagonal Size                     | 8 inch                 |        |
| Resolution                        | 800 x RGB x 480        |        |
| Active Area(mm)                   | 174.0 x 104.4          |        |
| Pixel Pitch (mm)                  | 0.2175                 |        |
| Pixel Configuration               | R.G.B. Vertical Stripe |        |
| Technology Type                   | a-Si                   |        |
| Display Mode                      | Normally Black         |        |
| Landscape or Portrait             | Landscape              |        |
| Surface Treatment (Top Polarizer) | Hard Coating           |        |
| Interface                         | LVDS                   |        |
| Color Depth                       | 16.7M                  |        |
| Dimension (H x V x D) (mm)        | 192x 122 x 10.5(Typ.)  | Note1  |
| Weight (g)                        | TBD                    | Note2  |

Table 2.1 General TFT Specifications

Note1: The dimensions do not include the length of FPC, screw and component height etc.. For detail dimension, please refer to the module outline drawing.

Note2: The weight does not include the weight of protective film.



#### **INDUSTRIAL DISPLAY MODULE**

# 3. Input / Output Terminals

# 3.1 CN1 Pin assignment (LCD Interface)

Mating connector type: FI-SEB20P-HFE-3000

| PIN# | Symbol                   | P/I/O | Description                                      | Remark |
|------|--------------------------|-------|--------------------------------------------------|--------|
| 1    | VCC P +3.3V Power supply |       | +3.3V Power supply                               |        |
| 2    | Reset                    | I     | Reset pin                                        |        |
| 3    | Standby                  | I     | Standby mode setting pin                         |        |
| 4    | GND                      | P     | Ground                                           | Note2  |
| 5    | LinkO-                   | I     | LVDS data 0-                                     |        |
| 6    | LinkO+                   | I     | LVDS data 0+                                     |        |
| 7    | GND                      | P     | Ground                                           | Note2  |
| 8    | Link1-                   | I     | LVDS data 1-                                     |        |
| 9    | Linkl+                   | I     | LVDS data 1+                                     |        |
| 10   | GND                      | P     | Ground                                           | Note2  |
| 11   | Link2-                   | I     | LVDS data 2-                                     |        |
| 12   | Link2+                   | I     | LVDS data 2+                                     |        |
| 13   | GND                      | P     | Ground                                           | Note2  |
| 14   | CLKIN-                   | I     | LVDS clock -                                     |        |
| 15   | CLKIN+                   | I     | LVDS clock +                                     |        |
| 16   | GND                      | P     | Ground                                           | Note2  |
| 17   | Link3-                   | I     | LVDS data 3-                                     |        |
| 18   | Link3+                   | I     | LVDS data 3+                                     |        |
| 19   | MODE                     | - 1   | Low=LVDS 6 bit<br>High=LVDS 8 bit VESA format    |        |
| 20   | SC                       | 1     | Scan direction control (Low=Normal.High=Reverse) | Note3  |

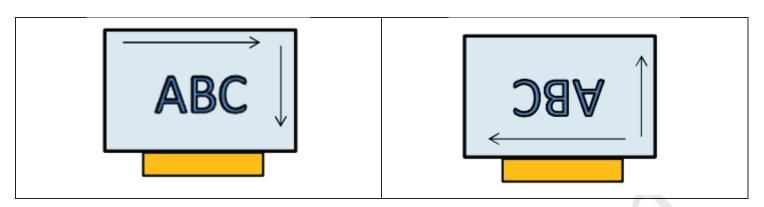
Table 3.1.1 Pin Assignment for LCD Interface

Note1: I/O definition

I---Input, O---Output, I/O---input/output P---Power/Ground, N ---No connection

Note2: All of the GND pins should be connected to the system ground.

Note3:


| Scan direction control | Scanning Direction        |
|------------------------|---------------------------|
| SC                     |                           |
| L                      | Up to down, Left to right |
| Н                      | Down to up, Right to left |

| SC=L                                | SC=H                                |
|-------------------------------------|-------------------------------------|
| from left to right, from up to down | from right to left, from down to up |





#### INDUSTRIAL DISPLAY MODULE



### 3.2 CN2 Pin assignment (BL Interface)

Mating connector type: FI-S6P-HFE-E1500

| PIN# | Symbol | P/I/O | Description                       | Remark |
|------|--------|-------|-----------------------------------|--------|
| 1    | VL     | Р     | Power Supply Input Voltage        |        |
| 2    | VL     | Р     | Power Supply Input Voltage        |        |
| 3    | GNDL   | Р     | Ground                            |        |
| 4    | GNDL   | Р     | Ground                            |        |
| 5    |        |       | Backlight ON-OFF                  |        |
| 3    | BLEN   | I     | (High: ON, Low: OFF)              |        |
| 6    |        |       | Light Dimming Control (PWM) Input |        |
| U    | V PDIM | I     | Voltage(Hight active)             |        |

I/O definition: I---Input, O---Output, P---Power/Ground, N---No connection
Table 3.2.1 Pin Assignment for BL Interface

# 4. Absolute Maximum Ratings

GND=0V, Ta = 25°C

|               |          |      |         |      | - , -  |
|---------------|----------|------|---------|------|--------|
| Item          | Symbol   | MIN  | MAX     | Unit | Remark |
| Power Voltage | VDD      | -0.3 | 3.96    | V    | NI-4-4 |
| Input voltage | $V_{IN}$ | -0.3 | VCC+0.3 | V    | Note1  |

Table 3 Absolute Maximum Ratings

Note1: Input voltage include Mode,SC

## 5. Electrical Characteristics

Revision: 2.0

#### 5.1 DC Characteristics for Panel Driving

GND=0V, Ta = 25°C

| Item              |           | Symbol               | MIN     | TYP | MAX     | Unit | Remark |
|-------------------|-----------|----------------------|---------|-----|---------|------|--------|
| System Voltage    |           | VCC                  | 3.0     | 3.3 | 3.6     | V    |        |
| Input Signal      | Low Level | VIL                  | GND-0.3 | -   | 0.3*VCC | ٧    |        |
| Voltage High Lev  |           | VIH                  | 0.7*VCC | 1   | VCC+0.3 | V    |        |
| Power Consumption |           | Black Mode<br>(60Hz) | -       | TBD | -       | mA   |        |

Table 5.1.1 Operating Voltages





#### **INDUSTRIAL DISPLAY MODULE**

# 5.2 DC Characteristics for Backlight Driving

| Item                        |                | Symbol          | Min     | Тур | Max | Unit     | Remark |
|-----------------------------|----------------|-----------------|---------|-----|-----|----------|--------|
| Backlight power             | supply voltage | VL              | 11      | 12  | 13  | V        |        |
| Backlight power             | supply current | l <sub>vL</sub> | -       | TBD | 1   | mA       |        |
| Backlight power             | consumption    | $W_{\text{vL}}$ | -       | TBD | 1   | W        |        |
| Input voltage for           | High level     | 1               | 2.0     | ı   | 5.0 | <b>V</b> |        |
| V <sub>PDIM</sub> signal    | Low level      | -               | 0       | ı   | 0.4 | V        |        |
| Input voltage for           | High level     | -               | 2.0     | -   | 5.0 | V        |        |
| BLEN                        | Low level      | -               | 0       | -   | 0.4 | V        |        |
| V <sub>PDIM</sub> frequency |                | F PDIM          | 200     | ı   | 10k | HZ       |        |
| V <sub>PDIM</sub> duty      |                | D               | 5       |     | 100 | %        | Note1  |
| Operating Life T            | ime            |                 | 100,000 | -   |     | hrs      | Note2  |

Table 5.2.1 LED Backlight Characteristics

- Note 1: According to LED driver IC characteristics, the minimum value of V<sub>PDIM</sub> duty may vary with V<sub>PDIM</sub> frequency, higher the frequency, bigger the duty.
- Note 2: Optical performance should be evaluated at Ta=25℃ only. If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% of initial brightness. Typical operating life time is estimated data.

Revision: 2.0 TIANMA MICROELECTRONICS CO., LTD 4



# INDUSTRIAL DISPLAY MODULE

# 5.3 Recommended Power ON/OFF Sequence

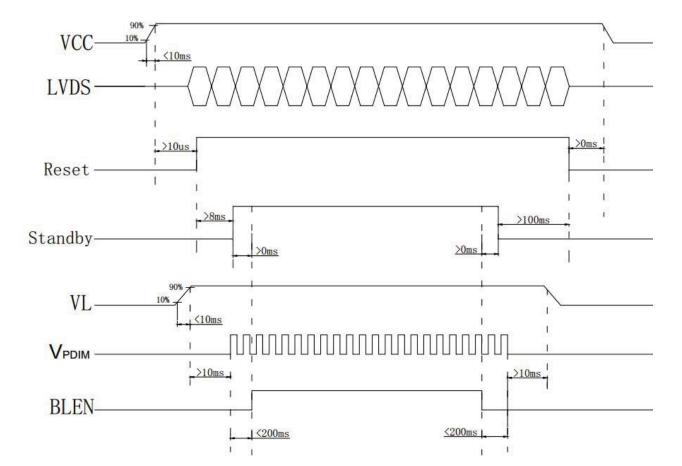



Figure 5.3.1 Power ON/OFF Sequence



#### **INDUSTRIAL DISPLAY MODULE**

# **5.4 LCD Module Block Diagram**

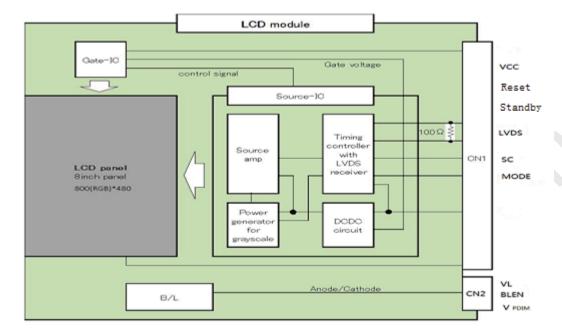



Figure 5.4 LCD Module Block Diagram

# **6. Interface Timing Characteristics**

| Parameter           |                     | Symbol | Panel Resolution |       |       | Unit |
|---------------------|---------------------|--------|------------------|-------|-------|------|
|                     |                     |        | 800xRGBx480      |       |       |      |
|                     |                     |        | Min.             | Тур.  | Max.  |      |
| DCLK frequency      |                     | FDCLK  | 28.39            | 33.26 | 52.03 | MHz  |
| Horizontal          | Horizontal total    | Th     | 910              | 1056  | 1138  | DCLK |
| section             | Horizontal blanking | Thb    | 110              | 256   | 338   | DCLK |
|                     | Valid Data Width    | Thd    |                  | 800   |       | DCLK |
| Voutical            | Vertical total      | Tv     | 520              | 525   | 762   | Н    |
| Vertical<br>section | Vertical blanking   | Tvb    | 40               | 45    | 282   | Н    |
|                     | Valid Data Width    | Tvd    |                  | 480   |       | Н    |
| Frame rate          |                     | FR     | -                | 60    |       | Hz   |

Table 6.1.1 TFT LCD Input Timing





## INDUSTRIAL DISPLAY MODULE

#### Horizontal

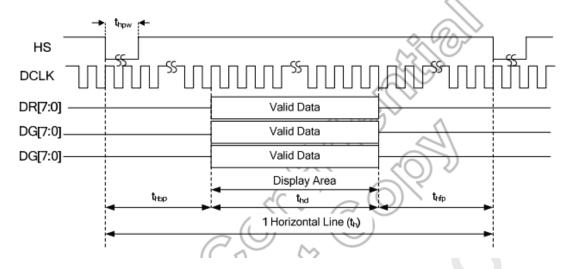



Table 6.1.1 Horizontal Input Timing at Sync mode

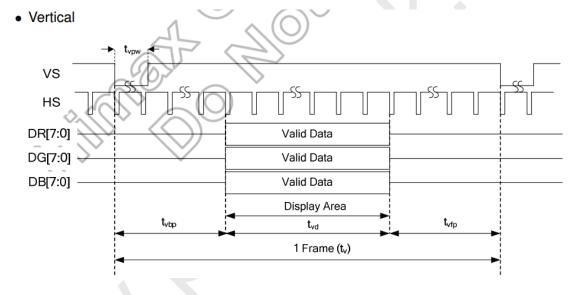



Table 6.1.2 Vertical Input Timing at Sync mode

**②** 



Revision: 2.0

#### P0800WVF1MA00

### INDUSTRIAL DISPLAY MODULE

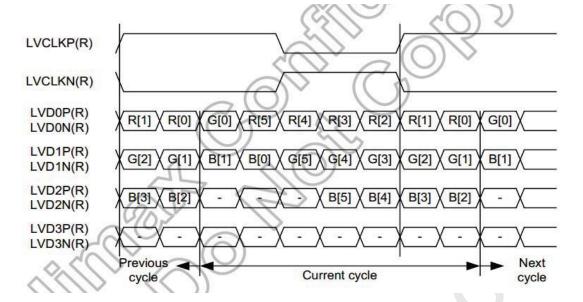



Figure 6.1.3 LVDS 6-bit

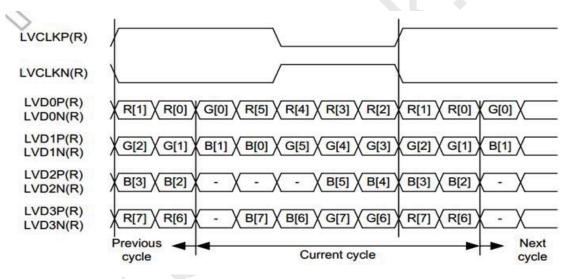
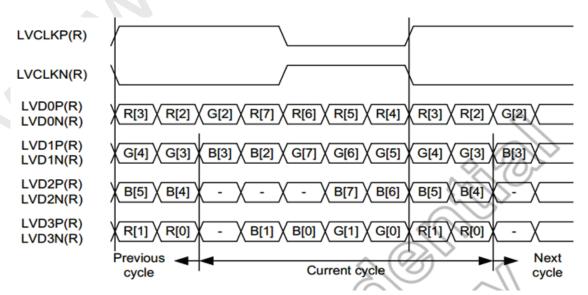
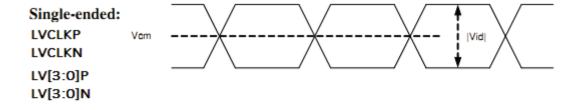



Figure 6.1.4 LVDS 8-bit(VESA format)





Figure 6.1.5 LVDS 8-bit(JEIDA format)



#### INDUSTRIAL DISPLAY MODULE

| Parameter                                 | Symbol              | Condition |      | Unit |             |       |
|-------------------------------------------|---------------------|-----------|------|------|-------------|-------|
| Farameter                                 | Syllibol            | Condition | Min. | Тур. | Max.        | Offic |
| Differential input high Threshold voltage | $V_{th}$            | Vcm=1.2V  | ı    | -    | +0.1        | V     |
| Differential input low threshold voltage  | $V_{tl}$            | -         | -0.1 | -    | -           | V     |
| Differential input common Mode voltage    | $V_{cm}$            | -         | 1    | 1.2  | 1.8- Vid /2 | V     |
| LVDS input voltage                        | $V_{INLV}$          | -         | 0.7  | -    | 1.8         | V     |
| Differential input voltage                | $ V_{id} $          | -         | 0.1  | -    | 0.6         | V     |
| Differential input leakage Current        | I <sub>Ivleak</sub> | -         | -10  | -    | +10         | μA    |

Table 6.1.6 LVDS Interface



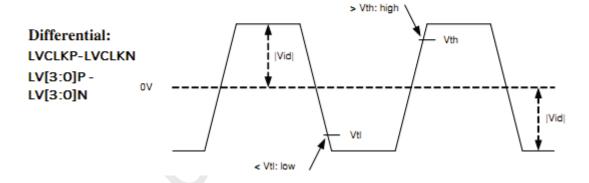



Figure 6.1.7 LVDS Interface

| Parameter        | Cumbal |       | Unit |      |        |
|------------------|--------|-------|------|------|--------|
| Farameter        | Symbol | Min.  | Тур. | Max. | Offit  |
| Clock frequency  | FLVCYC | 10    | -    | 85   | MHz    |
| Clock period     | TLVCYC | 11.76 | -    | 100  | nsec   |
| 1 data bit time  | UI     | -     | 1/7  | -    | TLVCYC |
| Clock high time  | LVHW   | 2.9   | 4    | 4.1  | UI     |
| Clock low time   | LVLW   | 2.9   | 3    | 4.1  | UI     |
| Position 1       | TPOS1  | -0.2  | 0    | 0.2  | UI     |
| Position 0       | TPOS0  | 0.8   | 1    | 1.2  | UI     |
| Position 6       | TPOS6  | 1.8   | 2    | 2.2  | UI     |
| Position 5       | TPOS5  | 2.8   | 3    | 3.2  | UI     |
| Position 4       | TPOS4  | 3.8   | 4    | 4.2  | UI     |
| Position 3       | TPOS3  | 4.8   | 5    | 5.2  | UI     |
| Position 2       | TPOS2  | 5.8   | 6    | 6.2  | UI     |
| Input eye width  | TEYEW  | 0.6   | -    | -    | UI     |
| Input eye border | TEX    | -     | -    | 0.2  | UI     |

Table 6.1.8. LVDS input timing parameters



## **INDUSTRIAL DISPLAY MODULE**

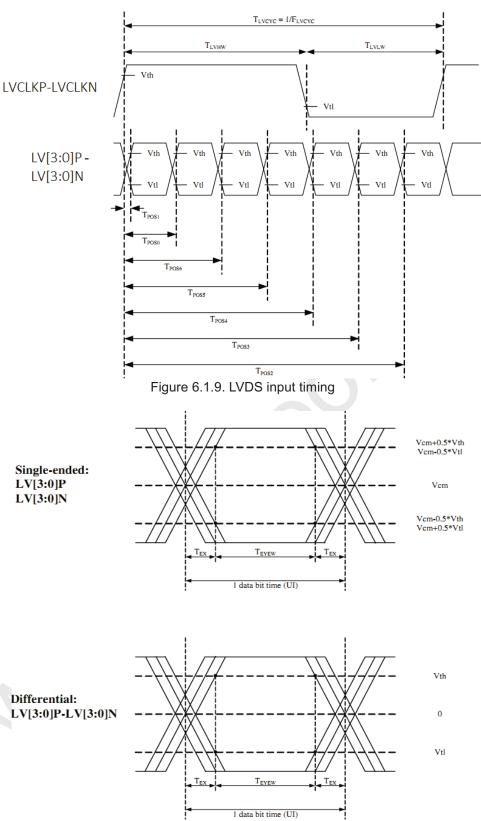



Figure 6.1.10. LVDS input eye diagram





# INDUSTRIAL DISPLAY MODULE

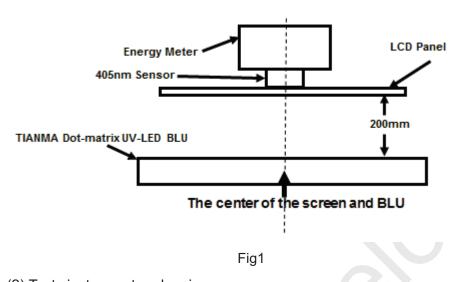
# 7. Optical Characteristics

| Item           |       | Symbol   | Condition | Min | Тур  | Max | Unit              | Remark      |
|----------------|-------|----------|-----------|-----|------|-----|-------------------|-------------|
| Viewing Angle  |       | θТ       |           |     | 88   |     | _ o               | Note2       |
|                |       | θВ       | CD>40     |     | 88   |     |                   |             |
|                |       | θL       | CR≧10     |     | 88   |     |                   |             |
|                |       | θR       |           |     | 88   |     |                   |             |
| Contrast Ratio |       | CR       | Θ=0       | 800 | 1000 |     |                   | Note<br>1&3 |
| Response Ti    | me    | Ton+Toff | 25°C      | 1   | 27   | 30  | ms                | Note4       |
|                | White | X        | 20        |     | TBD  |     |                   | Note<br>1&5 |
|                |       | Y        |           |     | TBD  |     |                   |             |
|                | Red   | X        |           |     | TBD  |     |                   |             |
|                |       | Y        |           |     | TBD  |     |                   |             |
| Chromaticity   | Green | X        | BL is on  |     | TBD  |     |                   |             |
|                |       | Y        |           |     | TBD  |     |                   |             |
|                | Blue  | X        | TBD TBD   |     |      |     |                   |             |
|                |       | Y        |           |     | TBD  |     |                   | -           |
|                | NTSC  |          |           | 65  | 70   |     | %                 |             |
| Luminance      |       | L        | 25°C      | 800 | 1000 |     | cd/m <sup>2</sup> |             |
| Uniformity     |       | U        |           |     | 70   |     | %                 | Note<br>1&5 |
| Gamma          |       | VESA     | 25°C      |     | 2.2  |     |                   | Note 1      |

Revision: 2.0

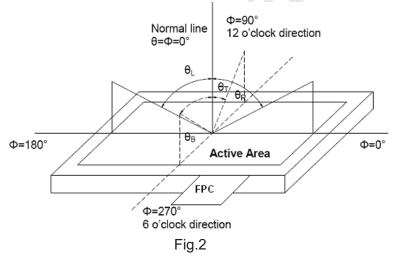





#### **INDUSTRIAL DISPLAY MODULE**

#### **Test Conditions:**

- 1. The ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 (Excluding viewing angle and response time test ).
- 3. Viewing Angle and Response Time test method follow the normal LCD test method.

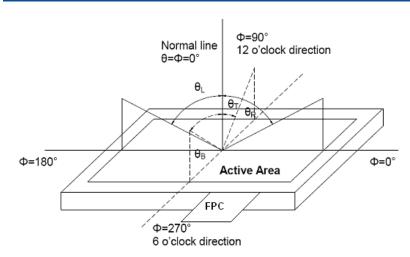

#### Note 1: (1) Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen (Excluding Uniformity test). All input terminals LCD panel must be ground when measuring the center area of the panel.



#### (2) Test instrument and recipe.

As shown in the Fig.1, all optics are measured under a collimating dot-matrix LED backlight, which emitting a wave of 405nm. Energy meter  $AccuMAX^{TM}$  –XS-405 is used to measure the following mentioned energy value, the LCD panel is 200mm away from the UV-LED surface. The transmissive energy value of LCD at white state is  $2mW/cm^2$ .(Fig.1)




Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD.(Fig.2)

Global LCD Panel Exchange Center 

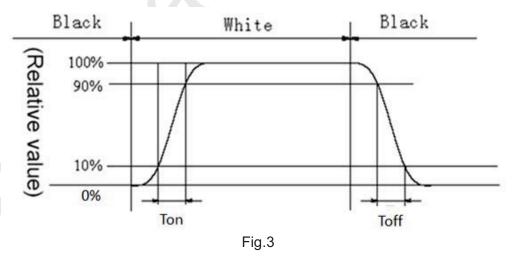
P0800WVF1MA00

#### INDUSTRIAL DISPLAY MODULE



Note 3: Definition of contrast ratio

Energy value measured when LCD is on the "White" state Contrast Ration(CR) = Energy value measured when LCD is on the "Black" state


"White state ": The state is that the LCD should be driven by Vwhite.

"Black state": The state is that the LCD should be driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

#### Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T<sub>ON</sub>) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T<sub>OFF</sub>) is the time between photo detector output intensity changed from 10% to 90%.(Fig.3)



Note 5: Definition of Energy Uniformity

Active area is divided into 9 measuring areas (Fig. 4). Every measuring point is placed at the center of BLU center.

Energy Uniformity (U) = Emin / Emax

L-----Active area length W----- Active area width





## INDUSTRIAL DISPLAY MODULE

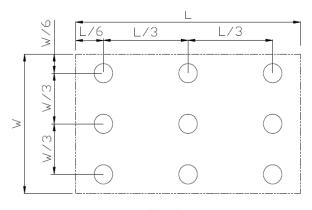



Fig.4

Emax: The measured Maximum Energy value of all the measurement positions.

Emin: The measured Minimum Energy value of all the measurement positions.

Note 6: Definition of transmittance:

Transmittance = Energy value measured when LCD is on the "White" state

Energy value measured from BLU



#### **INDUSTRIAL DISPLAY MODULE**

# 8. Reliability Test

### **Contents of Reliability Test**

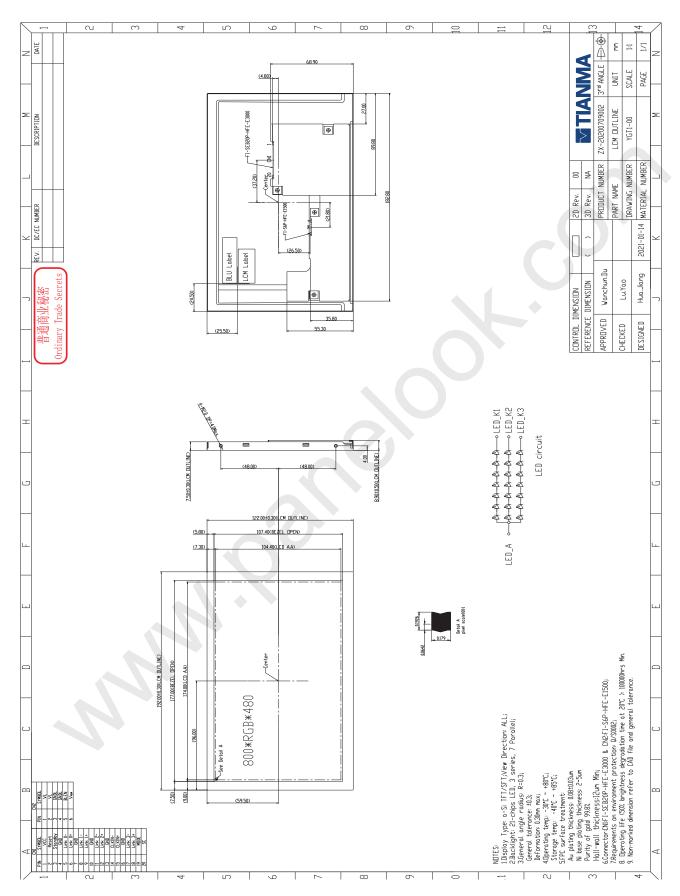
| Contents of Reliability Test |                                                     |                                                                                                                                                                                                                                      |                                        |  |  |  |  |
|------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|
| No                           | Test Item                                           | Test condition                                                                                                                                                                                                                       | Criterion                              |  |  |  |  |
| 1                            | High Temperature Storage                            | 80°C,500hrs                                                                                                                                                                                                                          | IEC60068-2-1:2007,<br>GB2423.2-2008    |  |  |  |  |
| 2                            | Low Temperature Storage                             | -30℃, 500hrs                                                                                                                                                                                                                         | IEC60068-2-1:2007<br>GB2423.1-2008     |  |  |  |  |
| 3                            | High Temperature Operation                          | 80°C,500hrs                                                                                                                                                                                                                          | IEC60068-2-1:2007<br>GB2423.1-2008     |  |  |  |  |
| 4                            | Low Temperature Operation                           | -30℃, 500hrs                                                                                                                                                                                                                         | IEC60068-2-1:2007<br>GB2423.1-2008     |  |  |  |  |
| 5                            | High Temperature & Humidity Operation (operational) | 60℃, RH=90%, 240hrs                                                                                                                                                                                                                  | IEC60068-2-78 :2001<br>GB/T2423.3—2006 |  |  |  |  |
| 6                            | Thermal Shock (non-operational)                     | '-30℃/30min、80℃/30min<br>100cycles、1H/Cycle,5min 完成高低温切<br>换                                                                                                                                                                         | IEC60068-2-14:1984,<br>GB2423.22-2002  |  |  |  |  |
| 7                            | Vibration Test<br>(non-operational)                 | vibration level :9.8m/s2 waveform: sinusoidal Frequency range: 5to 500Hz Frequency sweep rate:0.5 octave/min Duration: one sweep from 5 to 500Hz in each of three mutually perpendicular axis(each x,y,z axis: 1hour, total 3 hours) | IEC60068-2-6:1982<br>GB/T2423.10—1995  |  |  |  |  |
| 8                            | Shock Test<br>(non-operational)                     | shock level :1470m/s2(150G) waveform: half sinusoidal wave ,2ms Number of shocks: one shock input in each direction of three mutually perpendicular axes for a total of six shock inputs                                             | IEC60068-2-27:1987<br>GB/T2423.5—1995  |  |  |  |  |
| 9                            | ESD (operational)                                   | C=150PF $\cdot$ R=330 $\Omega$<br>Air : $\pm$ 15KV<br>Connect : $\pm$ 8KV                                                                                                                                                            | IEC61000-4-2:2001<br>GB/T17626.2-2006  |  |  |  |  |

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

Note3: Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Note4: In the standard condition, there shall be no practical problem that may affect the display function.


After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.





#### **INDUSTRIAL DISPLAY MODULE**

# 9. Mechanical Drawing





# INDUSTRIAL DISPLAY MODULE

# **10. Packing Instruction**

**TIANMA** 

TBD

Revision: 2.0

Global LCD Panel Exchange Center

P0800WVF1MA00



#### INDUSTRIAL DISPLAY MODULE

### 11. Precautions for Use of LCD Module

# 11.1 Handling Precautions

- (1) The display panel is made of glass. Do not subject it to mechanical shock by dropping it, etc.
- (2) If the display panel is damaged and the liquid crystal fluid inside it leaks out be sure not to get any in your mouth. If the fluid comes into contact with your skin or clothes promptly wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the bezel since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle the polarizer carefully.
- (5) If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is still not completely clear use a moist cloth with one of the following solvents:
  - Isopropyl alcohol

Solvents other than those mentioned above may damage the polarizer. Specifically, do not use the following:

- Water
- Ketone
- Aromatic solvents
- (6) POL surface temperature shall not exceed 95°C when the product is used or tested.
- (7) The storage or use environment must not contain an acid or base environment. for example, NH3, SO2...
- (8) Do not attempt to disassemble the LCD Module.
- (9) If the logic circuitry is powered off, do not apply the input signals.
- (10) To prevent destruction of the module by static electricity, be careful to maintain an optimum work environment.
- (11) Be sure to ground your body when handling the LCD Modules.
- (12) Tools used for assembly, such as soldering irons, must be properly grounded.
- (13) To reduce the amount of static electricity generated, do not conduct assembly or other work under very low humidity conditions.
- (14) The LCD Module is covered with a film to protect the display surface. Be careful when peeling off this protective film since static electricity may be generated.

#### 11.2 Storage precautions

- (1) When storing the LCD modules avoid exposure to direct sunlight or to the light of fluorescent lamps.
- (2) The LCD modules should be stored within the rated storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature: 15  $\sim$  35 degree C (or at least Temp. 10  $\sim$  40 degree C / Humidity 25%  $\sim$  75%), for National Std. recommendation

(3) The LCD modules should be stored in a room without acid, alkali or other harmful gases.

#### 11.3 Transportation Precautions

The LCD modules should not be dropped or subject to violent mechanical shock during transportation. Also they should avoid excessive pressure, water, high humidity and direct sunlight.

Revision: 2.0